The effect of geometry on tensile strength of biodegradable polylactic-acid tensile-test specimens by material extrusion

2021 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Alper Ekinci ◽  
Andrew A. Johnson ◽  
Andrew Gleadall ◽  
Xiaoxiao Han
F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1286
Author(s):  
Chockalingam Palanisamy ◽  
Hong Kiat Aaron Tay Hong Kiat

Background: High quality 3D printed products are in high demand, resulting in an increase in the production of 3D printed parts with precise tolerances, improved surface roughness, and overall durability. The processing parameters of 3D printers have a significant impact on the quality of 3D printed parts. Three-dimensionally printed parts must be durable, especially in terms of tensile strength, and its impact on the printer's process parameters must be investigated. Methods: Tensile test specimens were printed in the Makerbot 3D printer with aluminium polylactic acid (PLA) material. The three controllable input parameters taken into consideration were layer thickness, infill density and number of shells. The three levels for each of the respective parameters were 0.1mm, 0.2mm and 0.3mm for layer thickness; 2,3 and 4 for number of shells; 20% 40% and 60% for Infill density. Tensile testing was carried out on the specimens and data was tabulated. Using these data, an artificial neural network model was created using Matlab R2021b software’s neural network toolbox (alternatively Scilab can be used). Results: A high layer thickness (0.3mm) and a 40% infill density were found to be the most effective among all other parameters. The specimen with the lowest layer thickness of 0.1mm, four shells, and a 20% infill density had the highest tensile strength. With the tensile test data, a Matlab ANN model was developed. Validation was done by comparing the values obtained from the model with the experimental data by using random layer thickness, infill density, and number of shells. Conclusions:  In conclusion, higher layer thickness has lower tensile strengths. However, as the number of shells and infill density increases, the tensile strength increases. In summary an ANN model was successfully developed and validated to predict 3D printed aluminium parts.


2007 ◽  
Vol 340-341 ◽  
pp. 525-530 ◽  
Author(s):  
Satoshi Kajino ◽  
Motoo Asakawa

The mechanical and electrical applications of fine wires (D = 0.1 mm) has become more widely spread. In general, it is well known that fine drawn wires have high tensile strength while maintaining ductility. It has been determined that a hardened layer of around 0.04 mm in depth, referred to as the “additional shear strain layer,” is generated beneath the surface layer of the wire, and this additional shear strain layer affected the tensile strength of the fine wire. As an origin of this phenomenon, it was ascertained that the microstructure of surface layer was finer than that of center layer. The purpose of this paper is to investigate the effect of die angle on the microstructure and the tensile strength of the additional shear strain layer. The tensile test was performed as the surface layer was thinned by electro-polishing, and the crystal orientation and the crystal grain were measured via EBSD. As a result, it was ascertained that die angle affected the tensile strength and crystal grain refinement of the additional shear stray layer.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2010 ◽  
Vol 452-453 ◽  
pp. 261-264 ◽  
Author(s):  
Kenichi Takemura

In this study, molding condition and tensile properties of jute fiber reinforced composite were examined. PVA resin was used as matrix which is one of the biodegradable resin. Before tensile test, specimens have an offset twist. The tensile test after twist of jute fiber cloth was also conducted. As a result, following results were obtained. In the case of jute fiber cloth, the effect of twist deformation to tensile strength is not great. The reason is thought that the fiber cloth is flexible and easy to deform in this form. In the case of composite, molding time has an effect to the tensile properties. As the molding temperature increases, the tensile strength increases. So, the diffraction intensity was measured. The reason of effect to the strength is thought that the crystallization occurred in the matrix. When the molding temperature is so high, fiber has degradation, and the strength of the composite decreases. As the degree of twist increases, the strength decreases. The reasons are the delamination between layers and debonding between fiber and matrix.


2021 ◽  
Vol 2 (108) ◽  
pp. 75-85
Author(s):  
Q.H. Jebur ◽  
M.J. Jweeg ◽  
M. Al-Waily ◽  
H.Y. Ahmad ◽  
K.K. Resan

Purpose: Rubber is widely used in tires, mechanical parts, and user goods where elasticity is necessary. Some essential features persist unsolved, primarily if they function in excessive mechanical properties. It is required to study elastomeric Rubber's performance, which is operational in high-level dynamic pressure and high tensile strength. These elastomeric aims to increase stress breaking and preserve highly pressurised tensile strength. Design/methodology/approach: The effects of carbon black polymer matrix on the tensile feature of different Rubber have been numerically investigated in this research. Rubber's material characteristics properties were measured using three different percentages (80%, 90%and 100%) of carbon black filler parts per Hundreds Rubber (pphr). Findings: This study found that the tensile strength and elongation are strengthened as the carbon black filler proportion increases by 30%. Practical implications: This research study experimental tests for Rubber within four hyperelastic models: Ogden's Model, Mooney-Rivlin Model, Neo Hooke Model, Arruda- Boyce Model obtain the parameters for the simulation of the material response using the finite element method (FEM) for comparison purposes. These four models have been extensively used in research within Rubber. The hyperelastic models have been utilised to predict the tensile test curves—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model. Numerical Ogden model results have shown that the relative fitness error was the case with large strains are from 1% to 2.04%. Originality/value: In contrast, other models estimate parameters with fitting errors from 2.3% to 49.45%. The four hyperelastic models were tensile test simulations conducted to verify the efficacy of the tensile test. The results show that experimental data for the uniaxial test hyperelastic behaviour can be regenerated effectively as experiments. Ultimately, it was found that Ogden's Model demonstrates better alignment with the test data than other models.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7954-7964
Author(s):  
Diego Gomez-Maldonado ◽  
Maria Soledad Peresin ◽  
Christina Verdi ◽  
Guillermo Velarde ◽  
Daniel Saloni

As the additive manufacturing process gains worldwide importance, the need for bio-based materials, especially for in-home polymeric use, also increases. This work aims to develop a composite of polylactic acid (PLA) and nanofibrillated cellulose (NFC) as a sustainable approach to reinforce the currently commercially available PLA. The studied materials were composites with 5 and 10% NFC that were blended and extruded. Mechanical, structural, and thermal characterization was made before its use for 3D printing. It was found that the inclusion of 10% NFC increased the modulus of elasticity in the filaments from 2.92 to 3.36 GPa. However, a small decrease in tensile strength was observed from 55.7 to 50.8 MPa, which was possibly due to the formation of NFC aggregates in the matrix. This work shows the potential of using PLA mixed with NFC for additive manufacturing.


Sign in / Sign up

Export Citation Format

Share Document