Design of a half cut side member structure for optimal car crash energy absorption characteristics

2018 ◽  
Vol 4 (4) ◽  
pp. 416
Author(s):  
Qiong Wu ◽  
Xilu Zhao ◽  
Ichiro Hagiwara
2008 ◽  
Vol 580-582 ◽  
pp. 81-84
Author(s):  
Kil Sung Lee ◽  
Hyeon Kyeong Seo ◽  
Woo Chae Hwang ◽  
Jung Ho Kim ◽  
Yong Jun Yang ◽  
...  

Currently, the most important objective in designing automobiles is to focus on environment-friendly and safety performance aspects. For the environment-friendly aspect, the issues relate to the shift towards lightweight automobile production, for improving fuel-efficiency and reducing exhaust fumes. However, in contrast, the issues of the safety performance such as crash safety, comfort level and muti-functional programs demand increase of automobile’s weight. Therefore, the design of automobile should be inclined towards the safety aspects, but at the same time, it also should consider reducing the structural weight of an automobile. In this study, for lightweight design of side member, CFRP side member was manufactured from CFRP unidirectional prepreg sheet. The stacking condition related to the energy absorption of composite materials, is being considered as an issue for the structural efficiency. Therefore, the axial collapse tests were performed with change of the stacking condition, such as fiber orientation angle and interlaminar number. The collapse modes and energy absorption characteristics were analyzed according to fiber orientation angle and interlaminar number.


Author(s):  
Shi Hu ◽  
Huaming Tang ◽  
Shenyao Han

AbstractIn this paper, polyvinyl chloride (PVC) coarse aggregate with different mixing contents is used to solve the problems of plastic pollution, low energy absorption capacity and poor damage integrity, which provides an important reference for PVC plastic concrete used in the initial support structures of highway tunnels and coal mine roadway. At the same time, the energy absorption characteristics and their relationship under different impact loads are studied, which provides an important reference for predicting the energy absorption characteristics of concrete under other PVC aggregate content or higher impact speed. This study replaced natural coarse aggregate in concrete with different contents and equal volume of well-graded flaky PVC particles obtained by crushing PVC soft board. Also, slump, compression, and splitting strength tests, a free falling low-speed impact test of steel balls and a high-speed impact compression test of split Hopkinson pressure bar (SHPB) were carried out. Results demonstrate that the static and dynamic compressive strength decreases substantially, and the elastic modulus and slump decrease slowly with the increase of the mixing amount of PVC aggregate (0–30%). However, the energy absorption rate under low-speed impact and the specific energy absorption per MPa under high-speed impact increase obviously, indicating that the energy absorption capacity is significantly enhanced. Regardless of the mixing amount of PVC aggregate, greater strain rate can significantly enhance the dynamic compressive strength and the specific energy absorption per MPa. After the uniaxial compression test or the SHPB impact test, the relative integrity of the specimen is positively correlated with the mixing amount of PVC aggregate. In addition, the specimens are seriously damaged with the increase of the impact strain rate. When the PVC aggregate content is 20%, the compressive strength and splitting strength of concrete are 33.8 MPa and 3.26 MPa, respectively, the slump is 165 mm, the energy absorption rate under low-speed impact is 89.5%, the dynamic compressive strength under 0.65 Mpa impact air pressure is 58.77 mpa, and the specific energy absorption value per MPa is 13.33, which meets the requirements of shotcrete used in tunnel, roadway support and other impact loads. There is a linear relationship between the energy absorption characteristics under low-speed impact and high-speed impact. The greater the impact pressure, the larger the slope of the fitting straight line. The slope and intercept of the fitting line also show a good linear relationship with the increase of impact pressure. The conclusions can be used to predict the energy absorption characteristics under different PVC aggregate content or higher-speed impact pressure, which can provide important reference for safer, more economical, and environmental protection engineering structure design.


2010 ◽  
Vol 48 (6) ◽  
pp. 379-390 ◽  
Author(s):  
S. Salehghaffari ◽  
M. Tajdari ◽  
M. Panahi ◽  
F. Mokhtarnezhad

1985 ◽  
Vol 12 (6) ◽  
pp. 554-555 ◽  
Author(s):  
Reisaku Inoue ◽  
Masami Iwai ◽  
Masaru Yahagi ◽  
Tetsuo Yamazaki

2021 ◽  
pp. 114492
Author(s):  
Shuguang Yao ◽  
Yili Zhou ◽  
Zhixiang Li ◽  
Peng Zhang ◽  
Yuehao Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document