Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading

2010 ◽  
Vol 48 (6) ◽  
pp. 379-390 ◽  
Author(s):  
S. Salehghaffari ◽  
M. Tajdari ◽  
M. Panahi ◽  
F. Mokhtarnezhad
Author(s):  
Alireza Ahmadi ◽  
Masoud Asgari

Thin-walled structures are of much interest as energy absorption devices for their great crashworthiness and also low weight. Conical tubes are favorable structures because unlike most other geometries, they are also useful in oblique impacts. This paper investigated the effect of corrugations on energy absorption characteristics of conical tubes under quasi-static axial and oblique loadings. To do so, conical tubes with different corrugation geometries were analyzed using the finite element explicit code and the effects of corrugations on initial peak crushing force and specific energy absorption were studied. The finite element model was validated by experimental quasi-static compression tests on simple and corrugated aluminum cylinders. An efficient analytical solution for EA during axial loading was also derived and compared with the FEM solution. The crushing stableness was analyzed using the undulation of the load-carrying capacity parameter and it was shown that corrugations made collapsing mode, more predictable and controllable. The findings have shown that corrugated conical tubes have much better energy absorption characteristics compared with their non-corrugated counterparts. It was also discovered that during oblique loadings, introducing corrugations can significantly increase the specific energy absorption compared with simple cones.


2009 ◽  
Vol 76 (4) ◽  
Author(s):  
S. B. Bodlani ◽  
S. Chung Kim Yuen ◽  
G. N. Nurick

This paper is Part II of a two-part article and presents the results of numerical simulations conducted to investigate the energy absorption characteristics of square tubes subjected to dynamic axial loading. Part I reports the experimental results of both quasistatic and dynamic tests. The validated model is used to study the crushing characteristics of tubes with multiple induced circular hole discontinuities using the finite element package ABAQUS/EXPLICIT version 6.4-6. Holes of diameter 17 mm are used as crush initiators, which are laterally drilled into the tube wall to form opposing hole pairs. Holes of diameters 12.5 mm and 25 mm are also used to assess the effects of hole diameter on energy absorption. Two hole spacing configurations are investigated, one in which the hole pairs are placed at regular intervals of 50 mm along the tube wall and another in which the hole pairs are spaced symmetrically along the tube length. Holes are also drilled on either two or all four opposing tube walls. The number of holes is varied from 2 to 10. The results indicate that the introduction of the holes decreases the initial peak force. However, an increase in the number of holes, beyond two holes, does not further significantly decrease the initial peak force. A study of the crushing history of the tubes reveals that crushing is initiated at the location of the holes. The results also indicate that the type of hole spacing determines how crushing is initiated at the hole locations. The model satisfactorily predicts the resultant collapse shapes but overpredicts the crushed distance.


2014 ◽  
Vol 875-877 ◽  
pp. 534-541 ◽  
Author(s):  
Chawalit Thinvongpituk ◽  
Nirut Onsalung

In this paper, the experimental investigation of polyurethane (PU) foam-filled into circular aluminum tubes subjected to axial crushing was presented. The purpose of this study is to improve the energy absorption of aluminium tube under axial quasi-static load. The aluminium tube was made from the AA6063-T5 aluminium alloy tubes. Each tube was filled with polyurethane foam. The density of foam was varied from 100, 150 and 200 kg/mP3P including with empty tube. The range of diameter/thickness (D/t) ratio of tube was varied from 15-55. The specimen were tested by quasi-static axial load with crush speed of 50 mm/min using the 2,000 kN universal testing machine. The load-displacement curves while testing were recorded for calculation. The mode of collapse of each specimen was analyzed concerning on foam density and the influence of D/t ratio. The results revealed that the tube with foam-filled provided significantly increment of the energy absorption than that of the empty tube. While the density of foam and D/t ratios increase, the tendency of collapse mode is transformed from asymmetric mode to concertina mode.


Author(s):  
Shi Hu ◽  
Huaming Tang ◽  
Shenyao Han

AbstractIn this paper, polyvinyl chloride (PVC) coarse aggregate with different mixing contents is used to solve the problems of plastic pollution, low energy absorption capacity and poor damage integrity, which provides an important reference for PVC plastic concrete used in the initial support structures of highway tunnels and coal mine roadway. At the same time, the energy absorption characteristics and their relationship under different impact loads are studied, which provides an important reference for predicting the energy absorption characteristics of concrete under other PVC aggregate content or higher impact speed. This study replaced natural coarse aggregate in concrete with different contents and equal volume of well-graded flaky PVC particles obtained by crushing PVC soft board. Also, slump, compression, and splitting strength tests, a free falling low-speed impact test of steel balls and a high-speed impact compression test of split Hopkinson pressure bar (SHPB) were carried out. Results demonstrate that the static and dynamic compressive strength decreases substantially, and the elastic modulus and slump decrease slowly with the increase of the mixing amount of PVC aggregate (0–30%). However, the energy absorption rate under low-speed impact and the specific energy absorption per MPa under high-speed impact increase obviously, indicating that the energy absorption capacity is significantly enhanced. Regardless of the mixing amount of PVC aggregate, greater strain rate can significantly enhance the dynamic compressive strength and the specific energy absorption per MPa. After the uniaxial compression test or the SHPB impact test, the relative integrity of the specimen is positively correlated with the mixing amount of PVC aggregate. In addition, the specimens are seriously damaged with the increase of the impact strain rate. When the PVC aggregate content is 20%, the compressive strength and splitting strength of concrete are 33.8 MPa and 3.26 MPa, respectively, the slump is 165 mm, the energy absorption rate under low-speed impact is 89.5%, the dynamic compressive strength under 0.65 Mpa impact air pressure is 58.77 mpa, and the specific energy absorption value per MPa is 13.33, which meets the requirements of shotcrete used in tunnel, roadway support and other impact loads. There is a linear relationship between the energy absorption characteristics under low-speed impact and high-speed impact. The greater the impact pressure, the larger the slope of the fitting straight line. The slope and intercept of the fitting line also show a good linear relationship with the increase of impact pressure. The conclusions can be used to predict the energy absorption characteristics under different PVC aggregate content or higher-speed impact pressure, which can provide important reference for safer, more economical, and environmental protection engineering structure design.


1985 ◽  
Vol 12 (6) ◽  
pp. 554-555 ◽  
Author(s):  
Reisaku Inoue ◽  
Masami Iwai ◽  
Masaru Yahagi ◽  
Tetsuo Yamazaki

Sign in / Sign up

Export Citation Format

Share Document