3 Rare earth oxide-stabilized zirconia ceramics and composites with enhanced mechanical and functional properties

2021 ◽  
pp. 29-40
Author(s):  
Frank Kern
1988 ◽  
Vol 121 ◽  
Author(s):  
B. S. Chiou ◽  
M. Y. Lee ◽  
J. G. Duh

ABSTRACTSynthesized zirconia ceramics are prepared through the coprecipita-tion process. Application of the wet chemical approach is aimed at the achievement of highly sintered ceramics at lower temperature. The thermal evolution of the synthesized CeO2-ZrO2 powder is investigated with the aid of DTA and TGA measurement. The exothermic peaks on the DTA thermogram are futher identified by the IR analysis. The effect of CeO on the occurrence of the peaks is probed. For other rare-earth oxiae doped ceramics, such as Nd2O3. and Dy2O3. containing zirconia, the bulk and grain boundary resistances are evaluated by the impedance spectroscopy. The dependence of the associated activation energy in the rare-earth oxide doped zirconia is discussed with respect to the variation of the ionic radius of the rare earth constituent.


2006 ◽  
Vol 320 ◽  
pp. 69-72 ◽  
Author(s):  
Masao Kondo ◽  
Kazuaki Kurihara

The influence of a rare earth oxide/yttria-stabilized zirconia (YSZ) double buffer layer structure on the orientation of a perovskite thin film was investigated on (100) silicon substrates. A calcium titanate perovskite film with a mixture of (110) and (100) orientation was grown epitaxially on a YSZ buffer layer. Since rare earth oxides have almost the same chemical nature and different lattice parameters, it is anticipated that the lattice parameter of the buffer layer can be controlled by changing the rare earth element. An (100) oriented epitaxial calcium titanate film was obtained by changing the composition of rare earth oxides on the YSZ/Si substrate.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110077
Author(s):  
Chao Du ◽  
Cuirong Liu ◽  
Xu Yin ◽  
Haocheng Zhao

Herein, we synthesized a new polyethylene glycol (PEG)-based solid polymer electrolyte containing a rare earth oxide, CeO2, using mechanical metallurgy to prepare an encapsulation bonding material for MEMS. The effects of CeO2 content (0–15 wt.%) on the anodic bonding properties of the composites were investigated. Samples were analyzed and characterized by alternating current impedance spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, tensile strength tests, and anodic bonding experiments. CeO2 reduced the crystallinity of the material, promoted ion migration, increased the conductivity, increased the peak current of the bonding process, and increased the tensile strength. The maximum bonding efficiency and optimal bonding layer were obtained at 8 wt% CeO2. This study expands the applications of solid polymer electrolytes as encapsulation bonding materials.


2016 ◽  
Vol 307 ◽  
pp. 534-541 ◽  
Author(s):  
J. Xia ◽  
L. Yang ◽  
R.T. Wu ◽  
Y.C. Zhou ◽  
L. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document