Chapter 2 Opportunities and challenges in transforming higher education through machine learning

Author(s):  
Sujith Jayaprakash ◽  
V. Kathiresan ◽  
N. Shanmugapriya ◽  
Manish Dadhich
2021 ◽  
Vol 11 (3) ◽  
pp. 92
Author(s):  
Mehdi Berriri ◽  
Sofiane Djema ◽  
Gaëtan Rey ◽  
Christel Dartigues-Pallez

Today, many students are moving towards higher education courses that do not suit them and end up failing. The purpose of this study is to help provide counselors with better knowledge so that they can offer future students courses corresponding to their profile. The second objective is to allow the teaching staff to propose training courses adapted to students by anticipating their possible difficulties. This is possible thanks to a machine learning algorithm called Random Forest, allowing for the classification of the students depending on their results. We had to process data, generate models using our algorithm, and cross the results obtained to have a better final prediction. We tested our method on different use cases, from two classes to five classes. These sets of classes represent the different intervals with an average ranging from 0 to 20. Thus, an accuracy of 75% was achieved with a set of five classes and up to 85% for sets of two and three classes.


2021 ◽  
Vol 4 ◽  
pp. 98-100
Author(s):  
Semen Gorokhovskyi ◽  
Yelyzaveta Pyrohova

With the rapid development of applications for mobile platforms, developers from around the world already understand the need to impress with new technologies and the creation of such applications, with which the consumer will plunge into the world of virtual or augmented reality. Some of the world’s most popular mobile operating systems, Android and iOS, already have some well-known tools to make it easier to work with the machine learning industry and augmented reality technology. However, it cannot be said that their use has already reached its peak, as these technologies are at the stage of active study and development. Every year the demand for mobile application developers increases, and therefore more questions arise as to how and from which side it is better to approach immersion in augmented reality and machine learning. From a tourist point of view, there are already many applications that, with the help of these technologies, will provide more information simply by pointing the camera at a specific object.Augmented Reality (AR) is a technology that allows you to see the real environment right in front of us with a digital complement superimposed on it. Thanks to Ivan Sutherland’s first display, created in 1968 under the name «Sword of Damocles», paved the way for the development of AR, which is still used today.Augmented reality can be divided into two forms: based on location and based on vision. Location-based reality provides a digital picture to the user when moving through a physical area thanks to a GPS-enabled device. With a story or information, you can learn more details about a particular location. If you use AR based on vision, certain user actions will only be performed when the camera is aimed at the target object.Thanks to advances in technology that are happening every day, easy access to smart devices can be seen as the main engine of AR technology. As the smartphone market continues to grow, consumers have the opportunity to use their devices to interact with all types of digital information. The experience of using a smartphone to combine the real and digital world is becoming more common. The success of AR applications in the last decade has been due to the proliferation and use of smartphones that have the capabilities needed to work with the application itself. If companies want to remain competitive in their field, it is advisable to consider work that will be related to AR.However, analyzing the market, one can see that there are no such applications for future entrants to higher education institutions. This means that anyone can bring a camera to the university building and learn important information. The UniApp application based on the existing Swift and Watson Studio technologies was developed to simplify obtaining information on higher education institutions.


Author(s):  
Jalal Nouri ◽  
Ken Larsson ◽  
Mohammed Saqr

<p class="0abstractCxSpLast">The bachelor thesis is commonly a necessary last step towards the first graduation in higher education and constitutes a central key to both further studies in higher education and employment that requires higher education degrees. Thus, completion of the thesis is a desirable outcome for individual students, academic institutions and society, and non-completion is a significant cost. Unfortunately, many academic institutions around the world experience that many thesis projects are not completed and that students struggle with the thesis process. This paper addresses this issue with the aim to, on the one hand, identify and explain why thesis projects are completed or not, and on the other hand, to predict non-completion and completion of thesis projects using machine learning algorithms. The sample for this study consisted of bachelor students’ thesis projects (n=2436) that have been started between 2010 and 2017. Data were extracted from two different data systems used to record data about thesis projects. From these systems, thesis project data were collected including variables related to both students and supervisors. Traditional statistical analysis (correlation tests, t-tests and factor analysis) was conducted in order to identify factors that influence non-completion and completion of thesis projects and several machine learning algorithms were applied in order to create a model that predicts completion and non-completion. When taking all the analysis mentioned above into account, it can be concluded with confidence that supervisors’ ability and experience play a significant role in determining the success of thesis projects, which, on the one hand, corroborates previous research. On the other hand, this study extends previous research by pointing out additional specific factors, such as the time supervisors take to complete thesis projects and the ratio of previously unfinished thesis projects. It can also be concluded that the academic title of the supervisor, which was one of the variables studied, did not constitute a factor for completing thesis projects. One of the more novel contributions of this study stems from the application of machine learning algorithms that were used in order to – reasonably accurately – predict thesis completion/non-completion. Such predictive models offer the opportunity to support a more optimal matching of students and supervisors.</p>


2019 ◽  
Vol 8 (2) ◽  
pp. 4800-4807

Recently, engineers are concentrating on designing an effective prediction model for finding the rate of student admission in order to raise the educational growth of the nation. The method to predict the student admission towards the higher education is a challenging task for any educational organization. There is a high visibility of crisis towards admission in the higher education. The admission rate of the student is the major risk to the educational society in the world. The student admission greatly affects the economic, social, academic, profit and cultural growth of the nation. The student admission rate also depends on the admission procedures and policies of the educational institutions. The chance of student admission also depends on the feedback given by all the stake holders of the educational sectors. The forecasting of the student admission is a major task for any educational institution to protect the profit and wealth of the organization. This paper attempts to analyze the performance of the student admission prediction by using machine learning dimensionality reduction algorithms. The Admission Predict dataset from Kaggle machine learning Repository is used for prediction analysis and the features are reduced by feature reduction methods. The prediction of the chance of Admit is achieved in four ways. Firstly, the correlation between each of the dataset attributes are found and depicted as a histogram. Secondly, the top most high correlated features are identified which are directly contributing to the prediction of chance of admit. Thirdly, the Admission Predict dataset is subjected to dimensionality reduction methods like principal component analysis (PCA), Sparse PCA, Incremental PCA , Kernel PCA and Mini Batch Sparse PCA. Fourth, the optimized dimensionality reduced dataset is then executed to analyze and compare the mean squared error, Mean Absolute Error and R2 Score of each method. The implementation is done by python in Anaconda Spyder Navigator Integrated Development Environment. Experimental Result shows that the CGPA, GRE Score and TOEFL Score are highly correlated features in predicting the chance of admit. The execution of performance analysis shows that Incremental PCA have achieved the effective prediction of chance of admit with minimum MSE of 0.09, MAE of 0.24 and reasonable R2 Score of 0.26.


UniAssist project is implemented to help students who have completed their Bachelorette degree and are looking forward to study abroad to pursue their higher education such as Masters. Machine Learning would help identify appropriate Universities for such students and suggest them accordingly. UniAssist would help such individuals by recommending those Universities according to their preference of course, country and considering their grades, work experience and qualifications. There is a need for students hoping to pursue higher education outside India to get to know about proper universities. Data collected is then converted into relevant information that is currently not easily available such as courses offered by their dream universities, the avg. tuition fee and even the avg. expense of living near the chosen university on single mobile app based software platform. This is the first phase of the admission process for every student. The machine-learning algorithm used is Collaborative filtering memory-based approach using KNN calculated using cosine similarity. A mobile-based software application is implemented in order to help and guide students for their higher education.


2021 ◽  
Vol 13 (18) ◽  
pp. 10424
Author(s):  
Valentin Kuleto ◽  
Milena Ilić ◽  
Mihail Dumangiu ◽  
Marko Ranković ◽  
Oliva M. D. Martins ◽  
...  

The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine learning (ML) are mechanisms that evolved from data management and developing processes. Incorporating these mechanisms into business is a trend many different industries, including education, have identified as game-changers. As a result, education platforms and applications are more closely aligned with learners’ needs and knowledge, making the educational process more efficient. Therefore, AI and ML have great potential in e-learning and higher education institutions (HEI). Thus, the article aims to determine its potential and use areas in higher education based on secondary research and document analysis (literature review), content analysis, and primary research (survey). As referent points for this research, multiple academic, scientific, and commercial sources were used to obtain a broader picture of the research subject. Furthermore, the survey was implemented among students in the Republic of Serbia, with 103 respondents to generate data and information on how much knowledge of AI and ML is held by the student population, mainly to understand both opportunities and challenges involved in AI and ML in HEI. The study addresses critical issues, like common knowledge and stance of research bases regarding AI and ML in HEI; best practices regarding usage of AI and ML in HEI; students’ knowledge of AI and ML; and students’ attitudes regarding AI and ML opportunities and challenges in HEI. In statistical considerations, aiming to evaluate if the indicators were considered reflexive and, in this case, belong to the same theoretical dimension, the Correlation Matrix was presented, followed by the Composite Reliability. Finally, the results were evaluated by regression analysis. The results indicated that AI and ML are essential technologies that enhance learning, primarily through students’ skills, collaborative learning in HEI, and an accessible research environment.


2020 ◽  
Vol 25 (5) ◽  
pp. 559-568
Author(s):  
Joy Dhar ◽  
Asoke Kumar Jodder

After passing the 10th class, every student is eager to know which educational program will be the best for their higher education to match their career goal. Sometimes, they are very much confused to decide the best path for their higher education, and they need help to determine the best suitable academic program to develop their careers and achieve their goal. So, we introduce an effective recommendation system to forecast each student's best educational program for their career development. This proposed research is accomplished by utilizing machine learning (ML) approaches to forecast every student's best academic path based on their past academic performances and recommend them the best suitable academic program for their higher studies. Class 10th standard passing student data are supplied to this automated system, and a correlation-based feature selection approach is applied to extract the relevant features for each academic program. This study utilizes multiple ML algorithms to provide the best results and forecast each student's academic performance and select the best model based on their performance for each educational program. Hence, the best-selected model and related features are involved in the recommendation process to provide the best suitable academic path for achieving every student's career goals.


Sign in / Sign up

Export Citation Format

Share Document