Modulation of intestinal glucose absorption: postponement of glucose absorption by a-glucosidase inhibitors

1990 ◽  
pp. 93-112 ◽  
Author(s):  
M. Toeller
Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3361
Author(s):  
Miguel Valdés ◽  
Fernando Calzada ◽  
Jessica Elena Mendieta-Wejebe ◽  
Verenice Merlín-Lucas ◽  
Claudia Velázquez ◽  
...  

Annona diversifolia Safford and two acyclic terpenoids were evaluated to determine their antihyperglycemic activity as potential α-glucosidase and selective SGLT-1 inhibitiors. Ethanolic extract (EEAd), chloroformic (CHCl3Fr), ethyl acetate (EtOAcFr), aqueous residual (AcRFr), secondary 5 (Fr5) fractions, farnesal (1), and farnesol (2) were evaluated on normoglycemic and streptozocin-induced diabetic mice. EEAd, CHCl3Fr, Fr5, (1) and (2) showed antihyperglycemic activity. The potential as α-glucosidase inhibitors of products was evaluated with oral sucrose and lactose tolerance (OSTT and OLTT, respectively) and intestinal sucrose hydrolysis (ISH) tests; the potential as SGLT-1 inhibitors was evaluated using oral glucose tolerance (OGTT), intestinal glucose absorption (IGA), and urinary glucose excretion (UGE) tests. In OSTT and OLTT, all treatments showed significant activity at two and four hours. In ISH, half maximal effective concentrations (CE50) of 565, 662 and 590 μg/mL, 682 and 802 μM were calculated, respectively. In OGTT, all treatments showed significant activity at two hours. In IGA, CE50 values of 1059, 783 and 539 μg/mL, 1211 and 327 μM were calculated, respectively. In UGE Fr5, (1) and (2) showed significant reduction of the glucose excreted compared with canagliflozin. These results suggest that the antihyperglycemic activity is mediated by α-glucosidase and selective SGLT-1 inhibition.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1939
Author(s):  
Elizabeth Barber ◽  
Michael J. Houghton ◽  
Gary Williamson

Certain flavonoids can influence glucose metabolism by inhibiting enzymes involved in carbohydrate digestion and suppressing intestinal glucose absorption. In this study, four structurally-related flavonols (quercetin, kaempferol, quercetagetin and galangin) were evaluated individually for their ability to inhibit human α-glucosidases (sucrase, maltase and isomaltase), and were compared with the antidiabetic drug acarbose and the flavan-3-ol(−)-epigallocatechin-3-gallate (EGCG). Cell-free extracts from human intestinal Caco-2/TC7 cells were used as the enzyme source and products were quantified chromatographically with high accuracy, precision and sensitivity. Acarbose inhibited sucrase, maltase and isomaltase with IC50 values of 1.65, 13.9 and 39.1 µM, respectively. A similar inhibition pattern, but with comparatively higher values, was observed with EGCG. Of the flavonols, quercetagetin was the strongest inhibitor of α-glucosidases, with inhibition constants approaching those of acarbose, followed by galangin and kaempferol, while the weakest were quercetin and EGCG. The varied inhibitory effects of flavonols against human α-glucosidases depend on their structures, the enzyme source and substrates employed. The flavonols were more effective than EGCG, but less so than acarbose, and so may be useful in regulating sugar digestion and postprandial glycaemia without the side effects associated with acarbose treatment.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2474
Author(s):  
Lyudmila V. Gromova ◽  
Serguei O. Fetissov ◽  
Andrey A. Gruzdkov

The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.


Surgery ◽  
2016 ◽  
Vol 160 (6) ◽  
pp. 1496-1507 ◽  
Author(s):  
Yehui Du ◽  
Hao Chen ◽  
Zefeng Xuan ◽  
Wenfeng Song ◽  
Liangjie Hong ◽  
...  

2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Nur Salsabeela Mohd Rahim ◽  
Ida Farah Ahmad ◽  
Terence Yew Chin Tan

Syzygium polyanthum is a herb widely used in Malaysia and Indonesia in cuisines. Traditionally, the herbal decoction of S. polyanthum (daun salam) leaves is often used by diabetic patients in Indonesia. Therefore, our objective is to evaluate the scientific evidence available for S. polyanthum in lowering blood glucose levels (BGL). We systematically searched Pubmed, Google Scholar, Scopus, CENTRAL. LILAC and clinicaltrials.gov databases up to 23rd October 2020 using the keywords “Syzygium polyanthum” and “antidiabetic”. From the selected 413 articles, eight studies involving rodents were included. All results showed a significant effect in lowering BGL without any adverse effects. The possible underlying mechanism of action is attributed to inhibiting intestinal glucose absorption and enhancing glucose uptake by the muscles. Chemical families responsible for the effect were determined as flavonoids, alkaloids and terpenoids. Thus, S. polyanthum leaves showed potential antidiabetic properties, but further research is required to identify the active compounds followed by the safety evaluation of this compound.


1994 ◽  
Vol 14 (11) ◽  
pp. 1711-1720 ◽  
Author(s):  
Chaivat Toskulkao ◽  
Monthaporn Sutheerawattananon

2018 ◽  
Vol 104 (6) ◽  
pp. 2131-2139 ◽  
Author(s):  
Domenico Tricò ◽  
Alessandro Mengozzi ◽  
Silvia Frascerra ◽  
Maria Tiziana Scozzaro ◽  
Andrea Mari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document