IBISA 3D: Image-Based Identification/Search for Archaeology Using a Three-dimensional Coin Model

2014 ◽  
pp. 186-193
Keyword(s):  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Na Liu

Objective. To explore the application of 3D image technology in motor and sensory nerve classification. Methods. A total of 200 sections of the 5cm-long popliteal fossa peroneal nerve from adult volunteers were cut and frozen. The slices were 10 m thick, and the interval between the slices was 0.25 mm. Acetylcholinesterase histochemical staining was used to observe the changes of nerve bundles under the microscope. The stained sections were transformed into digital images by the digital camera system, and the images were stitched to obtain a two-dimensional panoramic image 100 times magnified. The properties of the functional bundles were manually judged. Using Amira 3.1 three‐dimensional reconstruction software to realize the three-dimensional reconstruction and visualization of nerve can not only accurately perceive the complex three-dimensional surface structure of nerve, but also arbitrarily display, rotate, scale, and segment the three-dimensional structure inside nerve, and carry out three-dimensional measurement in time. It has made preliminary achievements in brachial plexus, lumbosacral plexus, neural stem functional bundle (group), and intramuscular nerve routing and distribution, including the regeneration process of sensory nerve and three-dimensional reconstruction and visualization of composite tissue containing sensory nerve. Conclusion. Based on histology and computer technology, the functional band of short peroneal nerve can be reconstructed in 3D, which provides a feasible basis for the three-dimensional reconstruction of the functional band of the long peripheral nerve.


Author(s):  
Michael Brady ◽  
Xiao-Bo Pan ◽  
Veit Schenk ◽  
Melissa Terras ◽  
Paul Robertson ◽  
...  

It is agreed that stilus tablets are very important documentary sources, however they are the most difficult to decipher. The difficulties in deciphering them is due to the rough surface of the tablets, the low brightness contrast of the incisions, the dense wood-grain lines, and the badly stained and pitted nature of the tablets. All of these posit a challenge for conventional two-dimensional (2D) image analysis. This chapter aims to provide a system that would aid the historian in interpreting stilus tablets by improving the legibility of the tablets. It provides novel ways of determining the texts incised on the tablets. One of these is the use of three-dimensional (3D) image analysis techniques. Such a technique is capable of detecting incisions, compared to the 2D image analysis, and is portable and inexpensive. Another method that can be used is the use of shadow stereo. This method employs low raking angle light close to the plane of the tablet at different elevations. The chapter also discusses the image formation process and the process of choosing elevations for each azimuth direction. The chapter also includes a discussion on realizing the shadow stereo algorithm.


1997 ◽  
Vol 3 (S2) ◽  
pp. 375-376
Author(s):  
José-Angel Conchello ◽  
Joanne Markham ◽  
James G. McNally

Three dimensional (3D)microscopy is a powerful toll for the visualization of biological specimens and processes. In 3D microscopy, a 3D image is collected by recording a series of two-dimensional (2D) images focusing the microscope at different planes through the specimen. Each 2D optical slice in this through focus series contains the in-focus information plus contributions from out-of-focus structures that obscure the image and reduce its contrast. There are two complementary approaches to reduce or ameliorate the effects of the out-of-focus contributions, optical and computational. In the optical approach a microscope is used that avoids collecting out-of-focus light, such as a confocal microscope (see and references therein), a two-photon or three-photon fluorescence excitation microscope, or atwo-sided microscope. In the computational approach, the through-focus series is processed in a computer using any of a number of debluring algorithms to reduce or ameliorate the out-of-focus contributions. In the past two decades, several methods for debluring microscopic images have been developed whose common aim is to undo the degradations introduced by the process of image formation and recording


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1250
Author(s):  
Andrzej Sioma

This paper presents a method of acquisition and analysis of three-dimensional images in the task of automatic location and evaluation of defects on the surface of ceramic tiles. It presents a brief description of selected defects appearing on the surface of tiles, along with the analysis of their formation. The paper includes the presentation of the method of constructing a 3D image of the tile surface using the Laser Triangulation Method (LTM), along with the surface imaging parameters employed in the research. The algorithms of three-dimensional surface image analysis of ceramic tiles used in the process of image filtering and defect identification are presented. For selected defects, the method of measuring defect parameters and the method of visualization of defects on the surface are also presented. The developed method was tested on defective products to confirm its effectiveness in the field of quick defect detection in automated control systems installed on production lines.


2018 ◽  
Vol 12 (1) ◽  
pp. 586-595 ◽  
Author(s):  
Abbas Shokri ◽  
Mohammad Reza Jamalpour ◽  
Amir Eskandarloo ◽  
Mostafa Godiny ◽  
Payam Amini ◽  
...  

Introduction: Cortical bone is an important anatomical structure and its thickness needs to be determined prior to many dental procedures to ensure treatment success. Imaging modalities are necessarily used in dentistry for treatment planning and dental procedures. Three-dimensional image reconstruction not only provides visual information but also enables accurate measurement of anatomical structures; thus, it is necessarily required for maxillofacial examination and in case of skeletal problems in this region. Aims: This study aimed to assess the ability of three Cone Beam Computed Tomography (CBCT) systems including Cranex 3D, NewTom 3G and 3D Promax for Three-Dimensional (3D) image reconstruction of the cortical plate with variable thicknesses. Methods: Depending on the cortical bone thickness, samples were evaluated in three groups of ≤ 0. 5 mm, 0.6 -1 mm and 1.1-1.5 mm cortical bone thickness. The CBCT scans were obtained from each sample using three systems, their respective FOVs, and 3D scans were reconstructed using their software programs. Two observers viewed the images twice with a two-week interval. The ability of each system in the 3D reconstruction of different thicknesses of cortical bone was determined based on its visualization on the scans. The data were analyzed using SPSS and Kappa test. Results: The three systems showed the greatest difference in the 3D reconstruction of cortical bone with < 0.5 mm thickness. Cranex 3D with 4×6 cm2 FOV had the highest and 3D Promax with 8×8 cm2 FOV had the lowest efficacy for 3D reconstruction of cortical bone. Cranex 3D with 4×6 cm2 and 6×8 cm2 FOVs and NewTom 3G with 5×5 cm2 and 8×5 cm2 FOVs showed significantly higher efficacy for 3D reconstruction of cortical bone with 0.6-1mm thickness while 3D Promax followed by NewTom 3G with 8×8 cm2 FOV had the lowest efficacy for this purpose. Conclusion: Most CBCT systems have high efficacy for 3D image reconstruction of cortical bone with thicknesses over 1 mm while they have poor efficacy for image reconstruction of cortical bone with less than 0.5 mm thickness. Thus, for accurate visualization of anatomical structures on CBCT scans, systems with smaller FOVs and consequently smaller voxel size are preferred.


2001 ◽  
Vol 203 ◽  
pp. 303-306 ◽  
Author(s):  
Z. Q. Qu ◽  
Y. C. Jiang ◽  
T. Luan ◽  
Z. Xu

The three-dimensional (3D) image of an Hα flare is reconstructed from its line-center and seriary off-center filtergrams. The reconstruction is based on the principle of the line formation theory that the contribution function (CF) of emergent specific line intensity describes the escape photon distribution from stellar atmospheric layers. Thus the reconstruction depends on the model atmosphere accepted which determines the CF. An Hα flare taking place on April 22, 1992 is utilized to illustrate the process.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Jayachandra R. Kura ◽  
Russell D. Wnek ◽  
Michael C. Reynolds ◽  
Kinley H. Buckley ◽  
Dana M. Otzel ◽  
...  

2012 ◽  
Vol 49 (10) ◽  
pp. 1212-1220 ◽  
Author(s):  
Dinh Hong Doan ◽  
Pierre Delage ◽  
Jean François Nauroy ◽  
Anh Minh Tang ◽  
Souhail Youssef

The microstructure of oil sand samples extracted at a depth of 75 m from the estuarine Middle McMurray Formation (Alberta, Canada) has been investigated using high resolution three-dimensional (3D) X-ray microtomography (µCT) and cryo scanning electron microscopy (CryoSEM). µCT images evidenced some dense areas composed of highly angular grains surrounded by fluids, which are separated by larger pores full of gas. In dense areas, 3D image analysis provided porosity values comparable with in situ log data and macroscopic laboratory determinations, showing that they are representative of intact states. µCT hence provided some information on the morphology of the cracks and disturbance created by gas expansion. The CryoSEM technique, in which the sample is freeze fractured within the SEM chamber prior to observation, provided pictures in which the (frozen) bitumen clearly appears between the sand grains. No evidence of the existence of a thin connate water layer between grains and the bitumen, frequently mentioned in the literature, has been obtained. Bitumen appears to strongly adhere to the grains, with some grains being completely coated. The curved shape of some bitumen menisci suggests a bitumen wet behaviour.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Weixian Tan ◽  
Pingping Huang ◽  
Zengshu Huang ◽  
Yaolong Qi ◽  
Wenqin Wang

Three-dimensional (3D) microwave imaging has been proven to be well suited for concealed weapon detection application. For the 3D image reconstruction under two-dimensional (2D) planar aperture condition, most of current imaging algorithms focus on decomposing the 3D free space Green function by exploiting the stationary phase and, consequently, the accuracy of the final imagery is obtained at a sacrifice of computational complexity due to the need of interpolation. In this paper, from an alternative viewpoint, we propose a novel interpolation-free imaging algorithm based on wavefront reconstruction theory. The algorithm is an extension of the 2D range stacking algorithm (RSA) with the advantages of low computational cost and high precision. The algorithm uses different reference signal spectrums at different range bins and then forms the target functions at desired range bin by a concise coherent summation. Several practical issues such as the propagation loss compensation, wavefront reconstruction, and aliasing mitigating are also considered. The sampling criterion and the achievable resolutions for the proposed algorithm are also derived. Finally, the proposed method is validated through extensive computer simulations and real-field experiments. The results show that accurate 3D image can be generated at a very high speed by utilizing the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document