scholarly journals Dynamic model of nuclear power plant steam turbine

2015 ◽  
Vol 25 (1) ◽  
pp. 65-86 ◽  
Author(s):  
Karol Kulkowski ◽  
Anna Kobylarz ◽  
Michał Grochowski ◽  
Kazimierz Duzinkiewicz

Abstract The paper presents the dynamic multivariable model of Nuclear Power Plant steam turbine. Nature of the processes occurring in a steam turbine causes a task of modeling it very difficult, especially when this model is intended to be used for on-line optimal process control (model based) over wide range of operating conditions caused by changing power demand. Particular property of developed model is that it enables calculations evaluated directly from the input to the output, including pressure drop at the stages. As the input, model takes opening degree of valve and steam properties: mass flow and pressure. Moreover, it allows access to many internal variables (besides input and output) describing processes within the turbine. The model is compared with the static steam turbine model and then verified by using archive data gained from researches within previous Polish Nuclear Power Programme. Presented case study concerns the WWER-440 steam turbine that was supposed to be used in Żarnowiec. Simulation carried out shows compliance of the static and dynamic models with the benchmark data, in a steady state conditions. Dynamic model also shows good behavior over the transient conditions.

Author(s):  
V. A. Khrustalev ◽  
M. V. Garievskii

The article presents the technique of an estimation of efficiency of use of potential heat output of an auxiliary boiler (AB) to improve electric capacity and manoeuvrability of a steam turbine unit of a power unit of a nuclear power plant (NPP) equipped with a water-cooled water-moderated power reactor (WWER). An analysis of the technical characteristics of the AB of Balakovo NPP (of Saratov oblast) was carried out and hydrocarbon deposits near the NPP were determined. It is shown that in WWER nuclear power plants in Russia, auxiliary boilers are mainly used only until the normal operation after start-up whereas auxiliary boiler equipment is maintained in cold standby mode and does not participate in the generation process at power plants. The results of research aimed to improve the systems of regulation and power management of power units; general principles of increasing the efficiency of production, transmission and distribution of electric energy, as well as the issues of attracting the potential of energy technology sources of industrial enterprises to provide load schedules have been analyzed. The possibility of using the power complex NPP and the AB as a single object of regulation is substantiated. The authors’ priority scheme-parametric developments on the possibility of using the thermal power of the auxiliary boilers to increase the power of the steam turbine of a nuclear power plant unit equipped with WWER reactors unit during peak periods, as well as the enthalpy balance method for calculating heat flows, were applied. The surface area of the additional heater of the regeneration “deaerator – high pressure heaters” system and its cost were calculated. On the basis of calculations, it was shown that the additional power that can be obtained in the steam turbine of the NPP with a capacity of 1200 MW due to the use of heat of the modernized auxiliary boiler in the additional heat exchanger is 40.5 MW. The additional costs for the implementation of the heat recovery scheme of the auxiliary boiler at different prices for gas fuel and the resulting system effect were estimated in an enlarged way. Calculations have shown the acceptability of the payback period of the proposed modernization.


2019 ◽  
Vol 34 (3) ◽  
pp. 238-242
Author(s):  
Rex Abrefah ◽  
Prince Atsu ◽  
Robert Sogbadji

In pursuance of sufficient, stable and clean energy to solve the ever-looming power crisis in Ghana, the Nuclear Power Institute of the Ghana Atomic Energy Commission has on the agenda to advise the government on the nuclear power to include in the country's energy mix. After consideration of several proposed nuclear reactor technologies, the Nuclear Power Institute considered a high pressure reactor or vodo-vodyanoi energetichesky reactor as the nuclear power technologies for Ghana's first nuclear power plant. As part of technology assessments, neutronic safety parameters of both reactors are investigated. The MCNP neutronic code was employed as a computational tool to analyze the reactivity temperature coefficients, moderator void coefficient, criticality and neutron behavior at various operating conditions. The high pressure reactor which is still under construction and theoretical safety analysis, showed good inherent safety features which are comparable to the already existing European pressurized reactor technology.


Author(s):  
Dmitry Dmitrievich Zekov ◽  
Mikhail Vladimirovich Ulyanov ◽  
Daniil Veniaminovich Mikryakov ◽  
Tatyana Alexandrovna Suvorova

In connection with the global tendency to prohibit the use of antibiotics in animal husbandry, the prospect of using in ichthyopathological practice preparations from plant materials, which are mostly non-toxic, rarely cause side effects, have an antibacterial effect against a wide range of pathogens of bacterial diseases, opens up. One of these preparations is the feed additive Aquatan (Farmatan Aqua) based on ellagitannins from sweet chestnut wood manufactured by Tanin Sevnica (Slovenia). The aim of this work was to study the effect of different dosages of Aquatan on the survival rate, the rate of mass accumulation and the growth rate of rainbow trout reared in the industrial conditions of the cage farm on the waste warm waters of the nuclear power plant and to assess the production and economic efficiency of the application. The tests were carried out for 34 days in February-March 2021 on the basis of an aquaculture cage farm of LLC “Fish Federation”, located in the water area of the waste canal of warm waste water of the Leningrad nuclear power plant (LNPP) in the area of the LNPP-2 industrial zone in the city of Sosnovy Bor, Leningrad Region. The object of the study is rainbow trout yearlings brought from different fish farms. A total of 247,131 specimens were planted, with an average weight of 156.5–235.7 g and a total weight of 43 950.67 kg. The main hydrochemical indicators of water at the enterprise for the trial period met the water quality requirements for growing salmon fish OST 15.372-87. The feeding was carried out with the production compound feed for salmonids of the firm Alltech® Coppens Supreme-22. In experimental cages, fish were fed with compound feed with the addition of the preparation Aquatan at various concentrations (1, 2, and 3 g/kg of feed); in the control, feed without additive was used. As a result of the experiment, a positive effect of the Aquatan additive in dosages of 2–3 g / 1 kg of feed on growth, mass accumulation, survival and feed costs was established, while when adding 1 g / 1 kg of feed, such an effect was not recorded.


Author(s):  
Guohui Cong ◽  
Ling Zhang

Environmental protection requirement is more and more critical now, and it increases the request to prevent dangerous liquid to leak outside in nuclear power plant too. Centrifugal pumps are the most important active equipments in nuclear power plant, but there is a shaft clearance between rotor and stator of centrifugal pump. The shaft clearance can lead pumped fluid to the outside, so the environment may be polluted by the leakage. In some critical conditions such as transferring high radioactive fluid in the pump, the leakage shall be totally forbidden. So solutions have to be found to make centrifugal pumps totally leak-free for applications in nuclear power plant. Normally there are three leak-free technologies for centrifugal pumps: mechanical seal with auxiliary system, canned motor and magnetic drive. In this paper, all the three leak-free technologies and some of their applications in EPR 3rd generation PWR nuclear power plants are presented and discussed. The results show that in EPR nuclear power plant, canned motor pumps can be preferably used for strict environmental requirement of leak-free if the pump power and operating conditions are applicable. For other conditions, pumps with double mechanical seal can also be used with additional sealing water system support. For centrifugal pumps with magnetic drive are not so applicable in high pressure condition, and the safety aspect is weaker than canned motor pumps, generally they are not used in EPR nuclear power plant at present.


Author(s):  
Li Li ◽  
Zhang Shengtao ◽  
Xu Zhao ◽  
Du Yu

For PWR, remote shutdown station (RSS) is a redundant control mean to shut down the reactor when main control room (MCR) inhabitation is challenged (e.g. fire, smoke...). Nowadays, due to nuclear power plants control measures were improved with DCS system, a full function DCS RSS was equipped and more essential equipment could be controlled on RSS. Under operating conditions that prohibit nuclear power plant operators to stay in the main control room, the operators should move to RSS and shutdown the reactor to ensure plant safety following <Moving to remote shutdown station when main control room is un-inhabitable operating strategy> (RSS strategy for short) to fallback the plant from power operation to cold shutdown. The original operating strategy by nature circulation is no longer the best choice both for operation safety and economy efficiency, and an optimized new strategy should be raised. Based on the former reason, an optimized operation strategy was raised in this paper. In the optimized strategy, all plant normal standard operation modes were considered as initial conditions, rather than only considering power operation condition in the original one. The fallback mode and fallback strategy for each initial condition was also designed and optimized. To accelerate the depression and heat removal process, a forced circulation operation strategy is adopted when the reactor coolant pumps are available, and less local operation was included by taking advantages of the full function operating measures on RSS. To simplify the whole procedure structure, the operation modules of other general operating procedures are reused. To validate the effectiveness of the optimized operating strategy, a full scope PWR simulation tool was employed to make thermo hydraulic calculation validation of the reactor response and also the remote control station HMI supporting validation. By simulating the original strategy and the optimized one and related analysis, we found that the optimized strategy is effective, and able to be executed based on the remote control station hardware. By executing the optimized strategy, the unit can fall back to the cold shutdown condition safely and a few hours were saved compared with the original strategy. The optimized strategy had already been implemented on real PWR nuclear power plant.


2017 ◽  
Vol 48 ◽  
pp. 491-515 ◽  
Author(s):  
Karol Kulkowski ◽  
Michał Grochowski ◽  
Kazimierz Duzinkiewicz ◽  
Anna Kobylarz

Author(s):  
Young Sik Pyun ◽  
Ruslan Karimbaev ◽  
Seimi Choi ◽  
Jun Suek Ro ◽  
Choong Ho Sanseong ◽  
...  

Abstract Additive Manufacturing (AM) which is also known as metal 3D printing technique is one of the promising manufacturing processes due to the capability to process a complex geometry component. This is implemented in wide range of applications in various industries such as automotive, aerospace, power plants, etc. The aging nuclear power plant components and the obsolescence of those components has become a concern in this industry, and AM has come as an alternative solution for this matter. The Board on Pressure and Technology Codes and Standards (BPTCS) and Board on Nuclear Codes and Standards (BNCS) Special Committees started to study the application of Powder Bed Fusion (PBF) technique for pressure retaining equipment made from UNS S31603. Also, later Korean International Working Group (KIWG) was also started a Task Group on Additive Manufacturing for Valves which focusing on Powder Bed Fusion (PBF) and Direct Energy Disposition (DED) process for pressure-retaining valve manufacturing especially for nuclear power plant application with the same material. However, the poor mechanical properties and performance, especially fatigue strength of AM materials become a concern due to the defects and flaws as the results of layering and multiple interfaces and welding related discontinuities. In this study, the fatigue strength of PBF and DED manufactured and Ultrasonic Nanocrystal Surface Modification (UNSM) treated UNS S31603 austenitic stainless steel was investigated.


Sign in / Sign up

Export Citation Format

Share Document