scholarly journals Mechanism of acute endosulfan intoxication-induced neurotoxicity in Sprague-Dawley rats / Mehanizam akutne neurotoksičnosti u Sprague-Dawley štakora izazvane trovanjem endosulfanom

2016 ◽  
Vol 67 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Tae-chang Jang ◽  
Jung-hee Jang ◽  
Kyung-won Lee

Abstract The purpose of this study was to investigate the molecular mechanism underlying oxidative and inflammatory neuronal cell death induced by endosulfan, a pesticide belonging to the chemical family of organochlorines. The cortical and hippocampal tissues derived from Sprague-Dawley (SD) rats treated with endosulfan exhibited increased intracellular accumulation of reactive oxygen species and oxidative damages to cellular macromolecules such as depletion of glutathione, lipid peroxidation, and protein carbonylation. Conversely, the expression of antioxidant enzymes including γ-glutamylcysteine ligase (GCL), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) was markedly reduced in the brain tissues exposed to endosulfan. Moreover, during endosulfan-induced neuronal cell death, mRNA expression of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was elevated, which seemed to be mediated by the activation of nuclear factor-kappa B (NF-κB) by phosphorylation of p65 subunit. These results suggest a new molecular mechanism underlying the endosulfan-induced acute neurotoxicity via induction of oxidative stress and pro-inflammatory responses.

Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 496 ◽  
Author(s):  
Sandra Kaiser ◽  
Sibylle Frase ◽  
Lisa Selzner ◽  
Judith-Lisa Lieberum ◽  
Jakob Wollborn ◽  
...  

(1) Background: A detailed understanding of the pathophysiology of hemorrhagic stroke is still missing. We hypothesized that expression of heme oxygenase-1 (HO-1) in microglia functions as a protective signaling pathway. (2) Methods: Hippocampal HT22 neuronal cells were exposed to heme-containing blood components and cell death was determined. We evaluated HO-1-induction and cytokine release by wildtype compared to tissue-specific HO-1-deficient (LyzM-Cre.Hmox1 fl/fl) primary microglia (PMG). In a study involving 46 patients with subarachnoid hemorrhage (SAH), relative HO-1 mRNA level in the cerebrospinal fluid were correlated with hematoma size and functional outcome. (3) Results: Neuronal cell death was induced by exposure to whole blood and hemoglobin. HO-1 was induced in microglia following blood exposure. Neuronal cells were protected from cell death by microglia cell medium conditioned with blood. This was associated with a HO-1-dependent increase in monocyte chemotactic protein-1 (MCP-1) production. HO-1 mRNA level in the cerebrospinal fluid of SAH-patients correlated positively with hematoma size. High HO-1 mRNA level in relation to hematoma size were associated with improved functional outcome at hospital discharge. (4) Conclusions: Microglial HO-1 induction with endogenous CO production functions as a crucial signaling pathway in blood-induced inflammation, determining microglial MCP-1 production and the extent of neuronal cell death. These results give further insight into the pathophysiology of neuronal damage after SAH and the function of HO-1 in humans.


2013 ◽  
Vol 35 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Jinbum Bae ◽  
Danbi Lee ◽  
Yun Kyu Kim ◽  
Minchan Gil ◽  
Joo-Yong Lee ◽  
...  

2019 ◽  
Vol 14 (12) ◽  
pp. 1934578X1989668 ◽  
Author(s):  
Phil Jun Lee ◽  
Hye-Jin Park ◽  
Hee Min Yoo ◽  
Namki Cho

A key pathologic event in neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, is endoplasmic reticulum (ER) stress-induced neuronal cell death. ER stress-induced generation of reactive oxygen species (ROS) has been implicated in neurological disease processes. Betulin is one of the major triterpenoids found in Betula platyphylla that possesses several biological properties, including cytoprotective and antioxidative effects. Therefore, we investigated whether betulin could prevent ER stress-induced neurotoxicity in HT-22 hippocampal neuronal cells. We observed that betulin reduced the thapsigargin (TG, an ER stress inducer)-induced apoptosis of HT-22 cells. Moreover, the cytoprotective effects of betulin were comparable to those of tauroursodeoxycholic acid, a potent ER stress-reducing agent. In our study, we confirmed that the ER stress-induced accumulation of ROS plays an important role in HT-22 cell death. Betulin also displayed cytoprotective effects in TG-injured HT-22 cells by reducing ROS generation; these results were comparable to those for N-acetyl-L-cysteine, a known ROS inhibitor. In addition, SnPP, a heme oxygenase-1 (HO-1) inhibitor significantly blocked the cytoprotective effects and ROS scavenging activity of betulin. Based on these results, we believe that betulin-mediated induction of HO-1 may contribute to the neuroprotective effects against ER stress in HT-22 hippocampal cells. We also found that betulin significantly inhibited the TG-induced expression of CHOP and caspase-12. These results demonstrated that betulin could serve as a potential therapeutic agent against ER stress-induced neurodegenerative diseases.


2022 ◽  
Vol 23 (1) ◽  
pp. 506
Author(s):  
Jo Young Son ◽  
Jin Sook Ju ◽  
Yu Mi Kim ◽  
Dong Kuk Ahn

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) participates in the regulation of cellular stress and inflammatory responses, but its function in neuropathic pain remains poorly understood. This study evaluated the role of RIPK1 in neuropathic pain following inferior alveolar nerve injury. We developed a model using malpositioned dental implants in male Sprague Dawley rats. This model resulted in significant mechanical allodynia and upregulated RIPK1 expression in the trigeminal subnucleus caudalis (TSC). The intracisternal administration of Necrosatin-1 (Nec-1), an RIPK1 inhibitor, blocked the mechanical allodynia produced by inferior alveolar nerve injury The intracisternal administration of recombinant rat tumor necrosis factor-α (rrTNF-α) protein in naive rats produced mechanical allodynia and upregulated RIPK1 expression in the TSC. Moreover, an intracisternal pretreatment with Nec-1 inhibited the mechanical allodynia produced by rrTNF-α protein. Nerve injury caused elevated TNF-α concentration in the TSC and a TNF-α block had anti-allodynic effects, thereby attenuating RIPK1 expression in the TSC. Finally, double immunofluorescence analyses revealed the colocalization of TNF receptor and RIPK1 with astrocytes. Hence, we have identified that astroglial RIPK1, activated by the TNF-α pathway, is a central driver of neuropathic pain and that the TNF-α-mediated RIPK1 pathway is a potential therapeutic target for reducing neuropathic pain following nerve injury.


Sign in / Sign up

Export Citation Format

Share Document