scholarly journals TNF-α-Mediated RIPK1 Pathway Participates in the Development of Trigeminal Neuropathic Pain in Rats

2022 ◽  
Vol 23 (1) ◽  
pp. 506
Author(s):  
Jo Young Son ◽  
Jin Sook Ju ◽  
Yu Mi Kim ◽  
Dong Kuk Ahn

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) participates in the regulation of cellular stress and inflammatory responses, but its function in neuropathic pain remains poorly understood. This study evaluated the role of RIPK1 in neuropathic pain following inferior alveolar nerve injury. We developed a model using malpositioned dental implants in male Sprague Dawley rats. This model resulted in significant mechanical allodynia and upregulated RIPK1 expression in the trigeminal subnucleus caudalis (TSC). The intracisternal administration of Necrosatin-1 (Nec-1), an RIPK1 inhibitor, blocked the mechanical allodynia produced by inferior alveolar nerve injury The intracisternal administration of recombinant rat tumor necrosis factor-α (rrTNF-α) protein in naive rats produced mechanical allodynia and upregulated RIPK1 expression in the TSC. Moreover, an intracisternal pretreatment with Nec-1 inhibited the mechanical allodynia produced by rrTNF-α protein. Nerve injury caused elevated TNF-α concentration in the TSC and a TNF-α block had anti-allodynic effects, thereby attenuating RIPK1 expression in the TSC. Finally, double immunofluorescence analyses revealed the colocalization of TNF receptor and RIPK1 with astrocytes. Hence, we have identified that astroglial RIPK1, activated by the TNF-α pathway, is a central driver of neuropathic pain and that the TNF-α-mediated RIPK1 pathway is a potential therapeutic target for reducing neuropathic pain following nerve injury.

Author(s):  
MANOBHARATHI VENGAIMARAN ◽  
KALAIYARASI DHAMODHARAN ◽  
MIRUNALINI SANKARAN

Objective: The central motive of this study is to explore the therapeutic impact of Diosgenin encapsulated Chitosan nanoparticles (DG@CS-NP) on mammary carcinogenesis in female Sprague Dawley rats via modulating hormonal status, cell proliferation, inflammatory responses, and Apoptosis. Methods: 7,12-dimethylbenz(a)anthracene (DMBA) was administered subcutaneously near the mammary gland (25 mg/kg b. wt) to provoke mammary tumor in female Sprague Dawley rats. Following the progress of a tumor, DMBA-induced tumor-bearing rats were medicated orally with 5 mg/kg b. wt of DG@CS-NP. Consequently, the expression of ER, PR, PCNA, Cyclin D1, NF-κB, TNF-α, Bcl-2, Caspases-3, and p53 in experimental rats were revealed via architectural immunohistochemistry. Further, Diosgenin interactions with these proteins were evidently confirmed by molecular docking analysis. Results: As a result, we noticed diminished levels of ER, PR, PCNA, Cyclin D1, NF-κB, TNF-α, and Bcl-2 expressions in DG@CS-NP medicated rats as well as with elevated levels of Caspases-3 and p53 expressions. In DMBA rats, the expressions were vice versa. Additionally, molecular docking analyses support these outcomes by highlighting the strong interaction between Diosgenin and breast cancer targets. Conclusion: These reports prove that DG@CS-NP imposes its therapeutic impact by hormonal adjustments, downregulating proteins involved in inflammation and cellular proliferation, and thereby promotes apoptosis by impeding apoptotic inhibitors.


Author(s):  
Chao-Lan Huang ◽  
Fei Liu ◽  
Yan-Yan Zhang ◽  
Jiu Lin ◽  
Min Fu ◽  
...  

Oxytocin receptor (OXTR), a G protein-coupled receptor, has been demonstrated to play a significant role in analgesia after activation by its canonical agonist, oxytocin (OXT) in the dorsal root ganglion (DRG). However, the role of OXTR in the trigeminal nervous system on the orofacial neuropathic pain is still little known. In the present study, we aimed to investigate the regulation effect and mechanism of OXTR in the trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (SpVc) on orofacial ectopic pain induced by trigeminal nerve injury. Inferior alveolar nerve (IAN) was transected to establish trigeminal ectopic pain model. Von Frey filaments behavioral test demonstrated IAN transection (IANX) evoked mechanical hypersensitivity in the whisker pad since from day 1 to at least day 14 after surgery. In addition, administration of OXT (50 μM and 100 μM) into the TG attenuated the mechanical hypersensitivity induced by IANX, which was reversed by pre-treatment with L-368,899 (a selective antagonist of OXTR) into the TG. In addition, immunofluorescence (IF) showed the expression of OXTR in neurons in the TG and SpVc. Furthermore, western blot (WB) analysis indicated that the upregulated expression of OXTR, calcitonin gene-related peptide (CGRP), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the TG and SpVc after IANX was inhibited by the administration of OXT into the TG. And the inhibition effect of OXT on the expression of CGRP, IL-1β, and TNF-α was abolished by pre-application of L-368,899 into the TG.


2010 ◽  
Vol 112 (2) ◽  
pp. 432-439 ◽  
Author(s):  
Hee Kee Kim ◽  
Yan Ping Zhang ◽  
Young Seob Gwak ◽  
Salahadin Abdi

Background Paclitaxel is a widely used chemotherapeutic drug for breast and ovarian cancer. Unfortunately, it induces neuropathic pain, which is a dose-limiting side effect. Free radicals have been implicated in many neurodegenerative diseases. The current study tests the hypothesis that a free radical scavenger plays an important role in reducing chemotherapy-induced neuropathic pain. Methods Neuropathic pain was induced by intraperitoneal injection of paclitaxel (2 mg/kg) on four alternate days (days 0, 2, 4, and 6) in male Sprague-Dawley rats. Phenyl N-tert-butylnitrone (PBN), a free radical scavenger, was administered intraperitoneally as a single dose or multiple doses before or after injury. Mechanical allodynia was measured by using von Frey filaments. Results The administration of paclitaxel induced mechanical allodynia, which began to manifest on days 7-10, peaked within 2 weeks, and plateaued for at least 2 months after the first paclitaxel injection. A single injection or multiple intraperitoneal injections of PBN ameliorated paclitaxel-induced pain behaviors in a dose-dependent manner. Further, multiple administrations of PBN starting on day 7 through day 15 after the first injection of paclitaxel completely prevented the development of mechanical allodynia. However, an intraperitoneal administration of pbn for 8 days starting with the first paclitaxel injection did not prevent the development of pain behavior. Conclusions This study clearly shows that PBN alleviated mechanical allodynia induced by paclitaxel in rats. Furthermore, our data show that PBN given on days 7 through 15 after the first paclitaxel injection prevented the development of chemotherapy-induced neuropathic pain. This clearly has a clinical implication.


2019 ◽  
Vol 37 (3) ◽  
pp. 192-198
Author(s):  
Liuyue Yang ◽  
Weihua Ding ◽  
Zerong You ◽  
Jinsheng Yang ◽  
Shiqian Shen ◽  
...  

Introduction: The aim of this study was to examine the effect of electroacupuncture (EA) on trigeminal neuropathic pain in rats and explore the potential mechanism underlying the putative therapeutic effect of EA. Methods: Trigeminal neuropathic pain behavior was induced in rats by unilateral chronic constriction injury of the distal infraorbital nerve (dIoN-CCI). EA was administered at ST2 ( Sibai) and Jiachengjiang. A total of 60 Sprague Dawley rats were divided into the following four groups ( n = 15 per group) to examine the behavioral outcomes after surgery and/or EA treatment: sham (no ligation); dIoN-CCI (received isoflurane only, without EA treatment); dIoN-CCI+EA-7d (received EA treatment for 7 days); and dIoN-CCI+EA-14d (received EA treatment for 14 days). Both evoked and spontaneous nociceptive behaviors were measured. Of these, 12 rats ( n = 4 from sham, dIoN-CCI, and dIoN-CCI+EA-14d groups, respectively) were used to analyze protein expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel in the Gasserian ganglion (GG) by immunohistochemistry. Results: dIoN-CCI rats exhibited mechanical allodynia and increased face-grooming activity that lasted at least 35 days. EA treatment reduced mechanical allodynia and face-grooming in dIoN-CCI rats. Overall, 14 days of EA treatment produced a prolonged anti-nociceptive effect as compared to 7-day EA treatment. The counts of HCN1 and HCN2 immunopositive puncta were increased in the ipsilateral GG in dIoN-CCI rats and were reduced by 14 days of EA treatment. Discussion: EA treatment relieved trigeminal neuropathic pain in dIoN-CCI rats, and this effect was dependent on the duration of EA treatment. The downregulation of HCN expression may contribute to the anti-nociceptive effect of EA in this rat model of trigeminal neuropathic pain.


2007 ◽  
Vol 85 (6) ◽  
pp. 613-620 ◽  
Author(s):  
Lisa C. Loram ◽  
Andreas C. Themistocleous ◽  
Linda G. Fick ◽  
Peter R. Kamerman

We characterized the time course of inflammatory cytokine release at the site of injury and in plasma after surgery on the rat tail. Anesthetized Sprague–Dawley rats had a 20 mm long incision made through the skin and fascia of their tails. Control rats were anesthetized, but no incision was made. Blood and tissue samples were taken 2 h and 1, 2, 4, and 8 days after surgery and analysed by ELISA for interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and cytokine-induced neutrophil chemoattractant-1 (CINC-1). In another group of rats, daily behavioral measurements were made of the rats’ responses to a blunt noxious mechanical stimulus (4 Newtons) applied to their tails. Primary hyperalgesia developed within 2 h of surgery and lasted for 6 days. The tissue concentrations of IL-1β, IL-6, and CINC-1 increased within 24 h of surgery, and TNF-α concentration increased within 48 h of surgery. Thereafter, cytokine concentrations remained elevated for 4 (IL-1β and IL-6) to 8 days (CINC-1, TNF-α) after surgery. Control animals did not develop hyperalgesia and no changes in cytokines concentrations were detected. Thus, in our model of postoperative pain, secretion of inflammatory cytokines IL-1β, IL-6, TNF-α, and CINC-1 was not essential for the initiation of postoperative hyperalgesia.


2004 ◽  
Vol 100 (3) ◽  
pp. 671-675 ◽  
Author(s):  
Sang-Wook Shin ◽  
James C. Eisenach

Background Manipulations that cause hypersensitivity to visceral stimuli have been shown to also result in hypersensitivity to somatic stimuli coming from convergent dermatomes, but the converse has not been examined. The authors tested whether lumbar spinal nerve ligation in rats, a common model of neuropathic pain that results in hypersensitivity to somatic stimuli, also leads to hypersensitivity to visceral stimuli coming from convergent dermatomes and whether pharmacology of inhibition differed between these two sensory modalities. Methods Female Sprague-Dawley rats were anesthetized, and the left L5 and L6 spinal nerves were ligated. Animals received either intrathecal saline or milnacipran (0.1-3 microg), and withdrawal thresholds to mechanical testing in the left hind paw, using von Frey filaments, and visceral testing, using balloon colorectal distension, were determined. Results Nerve ligation resulted in decreases in threshold to withdrawal to somatic mechanical stimulation (from 13 +/- 1.8 g to 2.7 +/- 0.7 g) and also in decreases in threshold to reflex response to visceral stimulation (from 60 mmHg to 40 mmHg). Intrathecal milnacipran increased withdrawal threshold to somatic stimulation in a dose-dependent manner but failed to alter the response to noxious visceral stimulation. Conclusions Injury of nerves innervating somatic structures enhances nociception from stimulation of viscera with convergent input from nearby dermatomes, suggesting that somatic neuropathic pain could be accompanied by an increased likelihood of visceral pain. Lack of efficacy of the antidepressant milnacipran against visceral stimuli suggests that visceral hypersensitivity may not share the same pharmacology of inhibition as somatic hypersensitivity after nerve injury.


2014 ◽  
Vol 117 (7) ◽  
pp. 682-693 ◽  
Author(s):  
K. A. Streeter ◽  
T. L. Baker-Herman

Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting iPMF. Here we tested the hypothesis that spinal N-methyl-d-aspartate receptor (NMDAR) activation constrains long-lasting iPMF in some rat substrains. Phrenic motor output was recorded in anesthetized, ventilated Harlan (HSD) and Charles River (CRSD) Sprague-Dawley rats exposed to a 30-min central neural apnea. HSD rats expressed a robust, long-lasting (>60 min) increase in phrenic burst amplitude (i.e., long-lasting iPMF) when respiratory neural activity was restored. By contrast, CRSD rats expressed an attenuated, transient (∼15 min) iPMF. Spinal NMDAR inhibition with DL-2-amino-5-phosphonopentanoic acid (APV) before neural apnea or shortly (4 min) prior to the resumption of respiratory neural activity revealed long-lasting iPMF in CRSD rats that was phenotypically similar to that in HSD rats. By contrast, APV did not alter iPMF expression in HSD rats. Spinal TNF-α or aPKC inhibition impaired long-lasting iPMF enabled by NMDAR inhibition in CRSD rats, suggesting that similar mechanisms give rise to long-lasting iPMF in CRSD rats with NMDAR inhibition as those giving rise to long-lasting iPMF in HSD rats. These results suggest that NMDAR activation can impose constraints on TNF-α-induced aPKC activation after neural apnea, impairing stabilization of transient iPMF into long-lasting iPMF. These data may have important implications for understanding differential responses to reduced respiratory neural activity in a heterogeneous human population.


Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 477
Author(s):  
Seunghui Woo ◽  
Geehoon Chung ◽  
Hyunsu Bae ◽  
Sun Kwang Kim

Bee venom (BV) has a long history of being used in traditional Korean medicine to relieve pain. Here, we investigated the effect of BV-derived phospholipase A2 (bvPLA2), a major component of BV, on peripheral nerve injury-induced neuropathic pain in rats. Spinal nerve ligation (SNL) was performed in Sprague Dawley rats to induce neuropathic pain, and paw withdrawal thresholds were measured using von Frey test. Mechanical allodynia, the representative symptom of neuropathic pain, was manifested following SNL and persisted for several weeks. The repetitive bvPLA2 treatment (0.2 mg/kg/day, i.p.) for two days significantly relieved the SNL-induced mechanical allodynia. The antiallodynic effect of bvPLA2 was blocked by spinal pretreatment with α1-adrenergic antagonist prazosin (30 μg, i.t.) but not with α2-adrenergic antagonist idazoxan (50 μg, i.t.). Also, the spinal application of α1-adrenergic agonist phenylephrine (50 μg, i.t.) reduced mechanical allodynia. These results indicate that bvPLA2 could relieve nerve injury-induced neuropathic mechanical allodynia through the activation of spinal α1-adrenergic receptors.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Myeoung Hoon Cha ◽  
Taick Sang Nam ◽  
Yongho Kwak ◽  
Hyejung Lee ◽  
Bae Hwan Lee

The production of proinflammatory cytokines including interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α(TNF-α) plays a key role in chronic pain such as neuropathic pain. We investigated changes in cytokine expression in injured peripheral nerves and dorsal root ganglia (DRG) following electroacupuncture (EA) treatment. Neuropathic pain was induced by peripheral nerve injury to the left hind limb of Sprague-Dawley rats under pentobarbital anesthesia. Two weeks later, the nerve-injured rats were treated by EA for 10 minutes. The expression levels of IL-1β, IL-6, and TNF-αin peripheral nerves and DRG of neuropathic rats were significantly increased in nerve-injured rats. However, after EA, the cytokine expression levels were noticeably decreased in peripheral nerves and DRG. These results suggest that EA stimulation can reduce the levels of proinflamtory cytokines elevated after nerve injury.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sisi Li ◽  
Xuying Li ◽  
Xiangbin Xie ◽  
Xiao Wei ◽  
Cong Yu ◽  
...  

Objectives. CXCR4 plays critical roles in the development of diabetic neuropathic pain (DNP) in rats, and its mechanism is unknown. This study was aimed at evaluating the potential therapeutic value of the antioxidant N-acetylcysteine (NAC) against DNP in rats and how CXCR4 participates in the formation of DNP. Methods. Control or streptozotocin- (STZ-) induced diabetic Sprague-Dawley rats received vehicle or NAC for four weeks starting one week after STZ injection. Von Frey and Hargreaves Apparatus were used to analyze the behavioral changes of mechanical allodynia and heat hyperalgesia. CXCR4, p-CXCR4, interleukin- (IL-) 6, and tumor necrosis factor- (TNF-) α in the spinal cord and the prefrontal cortex were detected by western blotting. Plasma IL-6, TNF-α, superoxide dismutase- (SOD-) 1, SOD-2, and lipid peroxidation products malondialdehyde (MDA) and 15-F2t-Isoprostane were detected by ELISA. Results. The values of paw withdrawal threshold (PWT) and paw withdrawal latencies (PWL) were reduced in diabetic rats compared to control rats that were concomitant with significant increases of CXCR4, p-CXCR4, IL-6, and TNF-α protein expressions in the spinal cord and prefrontal cortex. The treatment with NAC decreased the IL-6 and TNF-α protein expression and further increased CXCR4 and p-CXCR4 in the spinal cord and the cortex of diabetic rats that were accompanied with enhancement of PWT and PWL. NAC also significantly attenuated or reverted the increases of plasma IL-6, TNF-α, SOD-1, SOD-2, MDA, and 15-F2t-Isoprostane in diabetic rats. Conclusion. It is concluded that NAC treatment could effectively alleviate DNP and that induction of CXCR4 and p-CXCR4 may represent a mechanism whereby NAC attenuates DNP.


Sign in / Sign up

Export Citation Format

Share Document