scholarly journals Pro-Tumor and Anti-Tumor Functions of IL-17 and of TH17 Cells in Tumor Microenvironment

2016 ◽  
Vol 43 (2) ◽  
pp. 68-79 ◽  
Author(s):  
M. Gulubova ◽  
J. Ananiev ◽  
M. Ignatova ◽  
K. Halacheva

Summary The current review reveals the seven subclasses of CD4+ T helper cells, i.e. Th1, Th2, Th9, Th17, Th22, regulatory T cells and Tfh, the cytokines produced by them and their role in tumor microenvironment. Main attention was paid to IL-17 and Th17 cells. IL-17-producing cells were described, among which were Treg17 cells and Tc17 cells. The transcription factors, engaged in the activation of Th17 cell differentiation were reviewed. It was shown that Th17 cells might possess regulatory functions in tumor microenvironments that directs toward immunosuppression. The reciprocity between Treg and Th17 cells is realized when the production of a large amount of TGF-β in tumors causes Treg cell differentiation, and the addition of IL-6 shifts the differentiation of naïve T cells to Th17 cells. The main pro-tumor role of IL-17 is the promotion of tumor angiogenesis through stimulation of fibroblasts and endothelial cells. The antitumor functions of IL-17 are associated with enhancement of cytotoxic activity of tumor specific CTL cells and with angiogenesis that provide channels through which immune cells might invade tumor and promote antitumor immunity.

2020 ◽  
Author(s):  
June-Yong Lee ◽  
Jason A. Hall ◽  
Maria Pokrovskii ◽  
Lina Kroehling ◽  
Lin Wu ◽  
...  

SummaryT helper 17 (Th17) cells regulate mucosal barrier defenses, but also promote multiple autoinflammatory diseases. Although many molecular determinants of Th17 cell differentiation have been described, the transcriptional programs that sustain Th17 cells in vivo remain obscure. The transcription factor RORγt is critical for Th17 cell differentiation, but a distinct role of the closely-related RORα, which is co-expressed in Th17 cells, is not known. Here we demonstrate that, although dispensable for Th17 cell differentiation, RORα governs optimal Th17 responses in peripheral tissues. Thus, the absence of RORα in T cells led to significant reductions in both RORγt expression and effector function amongst Th17 cells, due to need for cooperative RORα and RORγt binding to a newly-identified Rorc enhancer element that is essential for Th17 lineage maintenance in vivo. Altogether, these data point to a non-redundant role of RORα in Th17 lineage maintenance via reinforcement of the RORγt transcriptional program.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3431-3431
Author(s):  
Lijun Meng ◽  
Zhenjiang Bai ◽  
Shan He ◽  
Kazuhiro Mochizuki ◽  
Janaki Purushe ◽  
...  

Abstract Dendritic cells (DCs) are important for primary T cell responses, and cytokines produced by DCs are thought to be essential for promoting T helper (Th)1 and Th17 differentiation. However, DCs can drive effector differentiation independent of cytokines. In mouse models of graft-versus-host-disease (GVHD), which is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT), we found that DC-derived Notch ligand Dll4 was important for CD4+ Th1 and Th17 cell differentiation. Blocking Dll4 led to decreased production of IFN-g and IL-17 in mice receiving allo-HSCT and inhibition of GVHD. However, the human counterparts of murine DLL4+ DCs and their function in alloreactive T cells have never been investigated. We report here the identification of human DLL4+ DCs and the critical role of DLL4 in DC-regulation of Th1 and Th17 cell differentiation. Flow cytometric analysis revealed that CD1c+ DCs and plasmacytoid DCs (pDCs) from the peripheral blood (PB) of healthy donors (n=18) did not express DLL4. However, 24 hours after stimulation with Toll-like receptor (TLR) agonists, PB DCs from healthy donors produced high levels of DLL4 on their surface. Pam3 (TLR1/2 stimulus), Poly I:C (TLR3 stimulus), LPS (TLR4 stimulus) and R848 (TLR7/8 stimulus) induced high levels of DLL4 expression on the surface of 50% to 80% of CD1c+ DCs. CpG oligodeoxynucleotides (TLR9 agonists) did not increase DLL4 in CD1c+ DCs, likely due to their lacking of TLR9. pDCs increased DLL4 expression when activated by R848 (16.0% ± 2.7%) and to a less extent by CpG oligodeoxynucleotides (8.6% ± 0.8%). Thus, activation of TLR signaling induces high levels of DLL4 in CD1c+ DCs and pDCs, with R848 being the most potent stimulus. Functional analysis using mixed lymphocyte reaction revealed that R848-activated CD1c+ DCs and pDCs induced greater proliferation of allogeneic CD4+ T cells and production of more IFN-g- and IL-17-producing effector cells compared to unstimulated CD1c+ DCs and pDCs. Blocking DLL4 using a neutralizing antibody decreased Notch signaling in T cells stimulated with activated DCs and led to production of 2- and 3-fold less Th1 cells and Th17 cells compared to IgG control, suggesting the importance of DLL4 in DC-regulation of effector differentiation. Molecular mechanism investigation revealed that SATAT3 and NFkB were crucial for inducing DLL4 in human DCs. Inhibiting STAT3 alone using its specific inhibitor S31-201 dramatically decreased DLL4 expression in activated PB DCs. Promoter reporter assays showed that STAT3 was required for activating DLL4 transcription. Inhibiting NFkB using its inhibitor PDTC also decreased the expression of DLL4 on the surface of R848-stimulated PB DCs. However, DCs derived from monocytes induced by GM-CSF and IL-4, which had activation of NFkB but did not express active STAT3 following stimulation by R848 + LPS, were DLL4 negative despite their upregulation of costimulatory molecules (e.g., CD40, CD80, CD83, and CD86). Thus, activation of STAT3 is critical for inducing DLL4 in human DCs, whereas active NFkB is important but not sufficient for inducing DLL4 in PB DCs. Finally, given the importance of alloreactive Th1 and Th17 cells in mediating GVHD in human allogeneic HSCT recipients, we further obtained PB from patients (n=7) undergoing allo-HSCT between 21 and 39 days after transplantation when these patients were fully engrafted and no longer pancytopenic. As compared to healthy donors, HSCT recipients had an averaged 12-fold higher frequency of DLL4+ CD1c+ DCs. These results indicate that upregulation of DLL4 on the surface of DCs is associated with alloreactive inflammatory conditions in HSCT patients. In summary, our findings show that DLL4 surface expression on human DCs is critical for the priming of human Th1 and Th17 responses and may have significant implication in better understanding of T cell-mediated inflammatory conditions such as chronic infection, autoimmune diseases, tumor rejection and GVHD after allo-HSCT. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (5) ◽  
pp. 1673 ◽  
Author(s):  
Elodie Renaude ◽  
Marie Kroemer ◽  
Romain Loyon ◽  
Delphine Binda ◽  
Christophe Borg ◽  
...  

Th17 cells represent a subset of CD4+ T cells characterized by the master transcription factor RORγt and the production of IL-17. Epigenetic modifications such as post-translational histone modifications and DNA methylation play a key role in Th17 cell differentiation and high plasticity. Th17 cells are highly recruited in many types of cancer and can be associated with good or bad prognosis. Here, we will review the remodeling of the epigenome induced by the tumor microenvironment, which may explain Th17 cell predominance. We will also discuss the promising treatment perspectives of molecules targeting epigenetic enzymes to remodel a Th17-enriched tumor microenvironment.


2018 ◽  
Vol 215 (9) ◽  
pp. 2413-2428 ◽  
Author(s):  
Krystin Deason ◽  
Ty Dale Troutman ◽  
Aakanksha Jain ◽  
Dilip K. Challa ◽  
Rajakumar Mandraju ◽  
...  

The toll-like receptor (TLR) and interleukin (IL)–1 family of receptors share several signaling components, including the most upstream adapter, MyD88. We previously reported the discovery of B cell adapter for phosphoinositide 3-kinase (BCAP) as a novel toll–IL-1 receptor homology domain–containing adapter that regulates inflammatory responses downstream of TLR signaling. Here we find that BCAP plays a critical role downstream of both IL-1 and IL-18 receptors to regulate T helper (Th) 17 and Th1 cell differentiation, respectively. Absence of T cell intrinsic BCAP did not alter development of naturally arising Th1 and Th17 lineages but led to defects in differentiation to pathogenic Th17 lineage cells. Consequently, mice that lack BCAP in T cells had reduced susceptibility to experimental autoimmune encephalomyelitis. More importantly, we found that BCAP is critical for IL-1R–induced phosphoinositide 3-kinase–Akt–mechanistic target of rapamycin (mTOR) activation, and minimal inhibition of mTOR completely abrogated IL-1β–induced differentiation of pathogenic Th17 cells, mimicking BCAP deficiency. This study establishes BCAP as a critical link between IL-1R and the metabolic status of activated T cells that ultimately regulates the differentiation of inflammatory Th17 cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1347-1347
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract Numerous clinical therapies have attempted to modulate tumor cell immunity, but for the most part, have proven unsuccessful. The inability to produce or augment an effective immune response is due in part to regulatory T (Treg) cells, which inhibit CD4 and CD8 T cell function. Our group has recently shown that Treg cell numbers are elevated in NHL tumors and that NHL B cells induce the development of Treg cells thereby inhibiting anti-tumor responses. The ability of NHL B cells to direct the cellular composition of their microenvironment is critical to our understanding of tumor immunity and we therefore wanted to determine if NHL B cells also directed the expansion or reduction of other T cell populations. IL-17-secreting CD4+ T cells (TH17), a newly characterized CD4+ T helper cell lineage, promote inflammation and play an important role in autoimmune disease. IL-17 has been shown to inhibit tumor cell growth suggesting a potential role for TH17 cells in anti-tumor immunity. We therefore set out to determine if TH17 cells were present in NHL tumors and whether or not their numbers were regulated by NHL B cells. Using unsorted mononuclear cells from malignant lymph nodes, we were unable to detect IL-17 expression in resting CD4+ T cells or CD4+ T cells activated with PMA/Ionomycin stimulation (less than 1%). However, IL-17-secreting CD4+ T cells could be detected in significant numbers in inflammatory tonsil and normal PBMCs. Interestingly, depletion of CD19+ NHL B cells from mononuclear cells obtained from patient biopsies resulted in detection of a clear population of IL-17-secreting CD4+ T cells (5%). These results suggest that NHL B cells suppress TH17 cell differentiation. The frequency of IL-17-secreting CD4+ T cells could not be further enhanced by the addition of exogenous TGF-b and IL-6, a cytokine combination favoring for TH17 differentiation, suggesting a further impairment of TH17 cell differentiation in the tumor microenvironment. In contrast, Foxp3 expression could be detected in resting CD4+ T cells (30%) and could be induced in CD4+CD25−Foxp3− T cells activated with TCR stimulation (28%). Contrary to the inhibition of TGF-b-mediated TH17 differentiation, Foxp3 expression could be dramatically upregulated by TGF-b in intratumoral CD4+ T cells (35%). In addition, lymphoma B cells strongly enhanced Foxp3 expression in intratumoral CD4+CD25−Foxp3−. Furthermore, when added together, the frequency of Foxp3+ T cells and Foxp3-inducible cells reached up to 60% of CD4+ T cells in tumor microenvironment of B-cell NHL. These findings suggest that the balance of effector TH17 cells and inhibitory Treg cells is disrupted in B-cell NHL and significantly favors the development of inhibitory Treg cells. Our data indicate that lymphoma B cells are key factor in regulating differentiation of intratumoral CD4+ T cells toward inhibitory CD4+ T cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hsing-Chuan Tsai ◽  
Sharlene Velichko ◽  
Li-Yin Hung ◽  
Reen Wu

The significance of Th17 cells and interleukin- (IL-)17A signaling in host defense and disease development has been demonstrated in various infection and autoimmune models. Numerous studies have indicated that Th17 cells and its signature cytokine IL-17A are critical to the airway’s immune response against various bacteria and fungal infection. Cytokines such as IL-23, which are involved in Th17 differentiation, play a critical role in controllingKlebsiella pneumonia(K. pneumonia) infection. IL-17A acts on nonimmune cells in infected tissues to strengthen innate immunity by inducing the expression of antimicrobial proteins, cytokines, and chemokines. Mice deficient in IL-17 receptor (IL-17R) expression are susceptible to infection by various pathogens. In this review, we summarize the recent advances in unraveling the mechanism behind Th17 cell differentiation, IL-17A/IL-17R signaling, and also the importance of IL-17A in pulmonary infection.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Lin Lang ◽  
Min-Hui Wang ◽  
Kuan-Yu Hung ◽  
Sung-Hao Hsu ◽  
Chih-Kang Chiang ◽  
...  

Background and Objectives. Hyperparathyroidism and hyperphosphatemia contribute to the inflammatory effects in chronic hemodialysis (HD) patients. Interleukin-17-producingCD4+effector memory T (Th17) cells and CD4+CD25+Foxp3 regulatory T (Treg) cells both play critical roles in immune activation and inflammation. We investigated the relationship between the Treg and Th17 cells and the phosphate level in chronic HD patients.Methods. 105 patients aged ≥35 years on chronic HD over 3 months were enrolled. The peripheral blood mononuclear cells were collected, cultured, and stimulated by phytohemagglutinin-L, phorbol myristate acetate, and ionomycin at different time points for T cell differentiation.Results. The T cell differentiation was as follows: Th17 cells (mean ± standard deviation (SD): 25.61% ± 10.2%) and Treg cells (8.45% ± 4.3%). The Th17 cell differentiation was positively correlated with the phosphate and albumin levels and negatively correlated with age. The Treg cell differentiation was negatively correlated with albumin level and age. In the nondiabetes group (n=53), the Th17 cell differentiation was predominantly correlated with the phosphate and iPTH (intact parathyroid hormone) levels as well as the dialysis vintage.Conclusion. Higher phosphate and iPTH levels and longer dialysis duration may increase Th17 cell differentiation, especially in the nondiabetic chronic HD patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Junfeng Sun ◽  
Haowei Jia ◽  
Xingqi Bao ◽  
Yue Wu ◽  
Tianyu Zhu ◽  
...  

AbstractThe T helper 17 (Th17) cells in tumor microenvironment play an important role in colorectal cancer (CRC) progression. This study investigated the mechanism of Th17 cell differentiation in CRC with a focus on the role of tumor exosome-transmitted long noncoding RNA (lncRNA). Exosomes were isolated from the CRC cells and serum of CRC patients. The role and mechanism of the lncRNA CRNDE-h transmitted by CRC exosomes in Th17 cell differentiation were assessed by using various molecular biological methods. The serum exosomal CRNDE-h level was positively correlated with the proportion of Th17 cells in the tumor-infiltrating T cells in CRC patients. CRC exosomes contained abundant CRNDE-h and transmitted them to CD4+ T cells to increase the Th17 cell proportion, RORγt expression, and IL-17 promoter activity. The underlying mechanism is that, CRNDE-h bound to the PPXY motif of RORγt and impeded the ubiquitination and degradation of RORγt by inhibiting its binding with the E3 ubiquitin ligase Itch. The in vivo experiments confirmed that the targeted silence of CRNDE-h in CD4+ T cells attenuated the CRC tumor growth in mice. The present findings demonstrated that the tumor exosome transmitted CRNDE-h promoted Th17 cell differentiation by inhibiting the Itch-mediated ubiquitination and degradation of RORγt in CRC, expanding our understanding of Th17 cell differentiation in CRC.


2021 ◽  
Vol 23 (1) ◽  
pp. 177
Author(s):  
Aoi Okubo ◽  
Youhei Uchida ◽  
Yuko Higashi ◽  
Takuya Sato ◽  
Youichi Ogawa ◽  
...  

Th17 cells play an important role in psoriasis. The differentiation of naïve CD4+ T cells into Th17 cells depends on glycolysis as the energy source. CD147/basigin, an integral transmembrane protein belonging to the immunoglobulin superfamily, regulates glycolysis in association with monocarboxylate transporters (MCTs)-1 and -4 in cancer cells and T cells. We examined whether CD147/basigin is involved in the pathogenesis of psoriasis in humans and psoriasis-model mice. The serum level of CD147 was increased in patients with psoriasis, and the expression of CD147 and MCT-1 was elevated in their dermal CD4+ RORγt+ T cells. In vitro, the potential of naïve CD4+ T cells to differentiate into Th17 cells was abrogated in CD147−/− T cells. Imiquimod (IMQ)-induced psoriatic dermatitis was significantly milder in CD147−/− mice and bone marrow chimeric mice lacking CD147 in the hematopoietic cells of myeloid lineage. These findings demonstrate that CD147 is essential for the development of psoriasis via the induction of Th17 cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document