scholarly journals RORα enforces stability of the T-helper-17 cell effector program

2020 ◽  
Author(s):  
June-Yong Lee ◽  
Jason A. Hall ◽  
Maria Pokrovskii ◽  
Lina Kroehling ◽  
Lin Wu ◽  
...  

SummaryT helper 17 (Th17) cells regulate mucosal barrier defenses, but also promote multiple autoinflammatory diseases. Although many molecular determinants of Th17 cell differentiation have been described, the transcriptional programs that sustain Th17 cells in vivo remain obscure. The transcription factor RORγt is critical for Th17 cell differentiation, but a distinct role of the closely-related RORα, which is co-expressed in Th17 cells, is not known. Here we demonstrate that, although dispensable for Th17 cell differentiation, RORα governs optimal Th17 responses in peripheral tissues. Thus, the absence of RORα in T cells led to significant reductions in both RORγt expression and effector function amongst Th17 cells, due to need for cooperative RORα and RORγt binding to a newly-identified Rorc enhancer element that is essential for Th17 lineage maintenance in vivo. Altogether, these data point to a non-redundant role of RORα in Th17 lineage maintenance via reinforcement of the RORγt transcriptional program.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Junfeng Sun ◽  
Haowei Jia ◽  
Xingqi Bao ◽  
Yue Wu ◽  
Tianyu Zhu ◽  
...  

AbstractThe T helper 17 (Th17) cells in tumor microenvironment play an important role in colorectal cancer (CRC) progression. This study investigated the mechanism of Th17 cell differentiation in CRC with a focus on the role of tumor exosome-transmitted long noncoding RNA (lncRNA). Exosomes were isolated from the CRC cells and serum of CRC patients. The role and mechanism of the lncRNA CRNDE-h transmitted by CRC exosomes in Th17 cell differentiation were assessed by using various molecular biological methods. The serum exosomal CRNDE-h level was positively correlated with the proportion of Th17 cells in the tumor-infiltrating T cells in CRC patients. CRC exosomes contained abundant CRNDE-h and transmitted them to CD4+ T cells to increase the Th17 cell proportion, RORγt expression, and IL-17 promoter activity. The underlying mechanism is that, CRNDE-h bound to the PPXY motif of RORγt and impeded the ubiquitination and degradation of RORγt by inhibiting its binding with the E3 ubiquitin ligase Itch. The in vivo experiments confirmed that the targeted silence of CRNDE-h in CD4+ T cells attenuated the CRC tumor growth in mice. The present findings demonstrated that the tumor exosome transmitted CRNDE-h promoted Th17 cell differentiation by inhibiting the Itch-mediated ubiquitination and degradation of RORγt in CRC, expanding our understanding of Th17 cell differentiation in CRC.


Blood ◽  
2009 ◽  
Vol 114 (5) ◽  
pp. 1005-1015 ◽  
Author(s):  
Chongyun Fang ◽  
Xinhua Zhang ◽  
Takashi Miwa ◽  
Wen-Chao Song

Toll-like receptors (TLRs) and complement are 2 major components of innate immunity that provide a first-line host defense and shape the adaptive immune responses. We show here that coincidental activation of complement and several TLRs in mice led to the synergistic production of serum factors that promoted T-helper cell 17 (Th17) differentiation from anti-CD3/CD28 or antigen-stimulated T cells. Although multiple TLR-triggered cytokines were regulated by complement, Th17 cell–promoting activity in the serum was correlated with interleukin (IL)–6 induction, and antibody neutralization of IL-6 abrogated the complement effect. By using both in vitro and in vivo approaches, we examined in more detail the mechanism and physiologic implication of complement/TLR4 interaction on Th17-cell differentiation. We found that the complement effect required C5a receptor, was evident at physiologically relevant levels of C5a, and could be demonstrated in cultured peritoneal macrophages as well as in the setting of antigen immunization. Importantly, despite an inhibitory effect of complement on IL-23 production, complement-promoted Th17 cells were functionally competent in causing autoimmunity in an adoptive transfer model of experimental autoimmune encephalomyelitis. Collectively, these data establish a link between complement/TLR interaction and Th17-cell differentiation and provide new insight into the mechanism of action of complement in autoimmunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junxia Huang ◽  
Xinzhi Xu ◽  
Ji Yang

T helper 17 (Th17) cells are characterized by the secretion of the IL-17 cytokine and are essential for the immune response against bacterial and fungal infections. Despite the beneficial roles of Th17 cells, unrestrained IL-17 production can contribute to immunopathology and inflammatory autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Although these diverse outcomes are directed by the activation of Th17 cells, the regulation of Th17 cells is incompletely understood. The discovery that microRNAs (miRNAs) are involved in the regulation of Th17 cell differentiation and function has greatly improved our understanding of Th17 cells in immune response and disease. Here, we provide an overview of the biogenesis and function of miRNA and summarize the role of miRNAs in Th17 cell differentiation and function. Finally, we focus on recent advances in miRNA-mediated dysregulation of Th17 cell fate in autoimmune diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ning Qu ◽  
Mingli Xu ◽  
Izuru Mizoguchi ◽  
Jun-ichi Furusawa ◽  
Kotaro Kaneko ◽  
...  

T-helper 17 (Th17) cells are characterized by producing interleukin-17 (IL-17, also called IL-17A), IL-17F, IL-21, and IL-22 and potentially TNF-α and IL-6 upon certain stimulation. IL-23, which promotes Th17 cell development, as well as IL-17 and IL-22 produced by the Th17 cells plays essential roles in various inflammatory diseases, such as experimental autoimmune encephalomyelitis, rheumatoid arthritis, colitis, and Concanavalin A-induced hepatitis. In this review, we summarize the characteristics of the functional role of Th17 cells, with particular focus on the Th17 cell-related cytokines such as IL-17, IL-22, and IL-23, in mouse models and human inflammatory diseases.


2016 ◽  
Vol 43 (2) ◽  
pp. 68-79 ◽  
Author(s):  
M. Gulubova ◽  
J. Ananiev ◽  
M. Ignatova ◽  
K. Halacheva

Summary The current review reveals the seven subclasses of CD4+ T helper cells, i.e. Th1, Th2, Th9, Th17, Th22, regulatory T cells and Tfh, the cytokines produced by them and their role in tumor microenvironment. Main attention was paid to IL-17 and Th17 cells. IL-17-producing cells were described, among which were Treg17 cells and Tc17 cells. The transcription factors, engaged in the activation of Th17 cell differentiation were reviewed. It was shown that Th17 cells might possess regulatory functions in tumor microenvironments that directs toward immunosuppression. The reciprocity between Treg and Th17 cells is realized when the production of a large amount of TGF-β in tumors causes Treg cell differentiation, and the addition of IL-6 shifts the differentiation of naïve T cells to Th17 cells. The main pro-tumor role of IL-17 is the promotion of tumor angiogenesis through stimulation of fibroblasts and endothelial cells. The antitumor functions of IL-17 are associated with enhancement of cytotoxic activity of tumor specific CTL cells and with angiogenesis that provide channels through which immune cells might invade tumor and promote antitumor immunity.


2019 ◽  
Author(s):  
Bibudha Parasar ◽  
Pamela V. Chang

AbstractT helper 17 (Th17) cells, an important subset of CD4+ T cells, help to eliminate extracellular infectious pathogens that have invaded our tissues. Despite the critical roles of Th17 cells in immunity, how the immune system regulates the production and maintenance of this cell type remains poorly understood. In particular, the plasticity of these cells, or their dynamic ability to trans-differentiate into other CD4+ T cell subsets, remains mostly uncharacterized. Here, we report a synthetic immunology approach using a photo-activatable immune modulator (PIM) to increase Th17 cell differentiation on demand with spatial and temporal precision to help elucidate this important and dynamic process. In this chemical strategy, we developed a latent agonist that, upon photochemical activation, releases a small-molecule ligand that targets the aryl hydrocarbon receptor (AhR) and ultimately induces Th17 cell differentiation. We used this chemical tool to control AhR activation with spatiotemporal precision within cells and to modulate Th17 cell differentiation on demand by using UV light illumination. We envision that this approach will enable an understanding of the dynamic functions and behaviors of Th17 cells in vivo during immune responses and in mouse models of inflammatory disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hsing-Chuan Tsai ◽  
Sharlene Velichko ◽  
Li-Yin Hung ◽  
Reen Wu

The significance of Th17 cells and interleukin- (IL-)17A signaling in host defense and disease development has been demonstrated in various infection and autoimmune models. Numerous studies have indicated that Th17 cells and its signature cytokine IL-17A are critical to the airway’s immune response against various bacteria and fungal infection. Cytokines such as IL-23, which are involved in Th17 differentiation, play a critical role in controllingKlebsiella pneumonia(K. pneumonia) infection. IL-17A acts on nonimmune cells in infected tissues to strengthen innate immunity by inducing the expression of antimicrobial proteins, cytokines, and chemokines. Mice deficient in IL-17 receptor (IL-17R) expression are susceptible to infection by various pathogens. In this review, we summarize the recent advances in unraveling the mechanism behind Th17 cell differentiation, IL-17A/IL-17R signaling, and also the importance of IL-17A in pulmonary infection.


2017 ◽  
Vol 114 (11) ◽  
pp. 2952-2957 ◽  
Author(s):  
Kalung Cheung ◽  
Geming Lu ◽  
Rajal Sharma ◽  
Adam Vincek ◽  
Ruihua Zhang ◽  
...  

T-helper 17 (Th17) cells have important functions in adaptor immunity and have also been implicated in inflammatory disorders. The bromodomain and extraterminal domain (BET) family proteins regulate gene transcription during lineage-specific differentiation of naïve CD4+ T cells to produce mature T-helper cells. Inhibition of acetyl-lysine binding of the BET proteins by pan-BET bromodomain (BrD) inhibitors, such as JQ1, broadly affects differentiation of Th17, Th1, and Th2 cells that have distinct immune functions, thus limiting their therapeutic potential. Whether these BET proteins represent viable new epigenetic drug targets for inflammatory disorders has remained an unanswered question. In this study, we report that selective inhibition of the first bromodomain of BET proteins with our newly designed small molecule MS402 inhibits primarily Th17 cell differentiation with a little or almost no effect on Th1 or Th2 and Treg cells. MS402 preferentially renders Brd4 binding to Th17 signature gene loci over those of housekeeping genes and reduces Brd4 recruitment of p-TEFb to phosphorylate and activate RNA polymerase II for transcription elongation. We further show that MS402 prevents and ameliorates T-cell transfer-induced colitis in mice by blocking Th17 cell overdevelopment. Thus, selective pharmacological modulation of individual bromodomains likely represents a strategy for treatment of inflammatory bowel diseases.


2020 ◽  
Author(s):  
Teruyuki Sano ◽  
Takahiro Kageyama ◽  
Victoria Fang ◽  
Ranit Kedmi ◽  
Jhimmy Talbot ◽  
...  

SummaryDifferentiation of intestinal T helper 17 (Th17) cells, which contribute to mucosal barrier protection from invasive pathogens, is dependent on colonization with distinct commensal bacteria. Segmented filamentous bacteria (SFB) are sufficient to support Th17 cell differentiation in mouse, but the molecular and cellular requirements for this process remain incompletely characterized. Here we show that intestine-draining mesenteric lymph nodes (MLN) are the dominant site of SFB-induced intestinal Th17 cell differentiation. Subsequent migration of these cells to the intestinal lamina propria is dependent on their up-regulation of integrin β7. Stat3-dependent induction of RORγt, the Th17 cell-specifying transcription factor, largely depends on IL-6, but signaling through the receptors for IL-21 and IL-23 can compensate for absence of IL-6 to promote SFB-directed Th17 cell differentiation. These results indicate that redundant cytokine signals guide commensal microbe-dependent Th17 cell differentiation in the MLN and accumulation of the cells in the lamina propria.


Sign in / Sign up

Export Citation Format

Share Document