Caribou and reindeer migrations in the changing Arctic

2021 ◽  
Vol 8 (1) ◽  
pp. 156-167
Author(s):  
Kyle Joly ◽  
Anne Gunn ◽  
Steeve D. Côté ◽  
Manuela Panzacchi ◽  
Jan Adamczewski ◽  
...  

Abstract Caribou and reindeer, Rangifer tarandus, are the most numerous and socio-ecologically important terrestrial species in the Arctic. Their migrations are directly and indirectly affected by the seasonal nature of the northernmost regions, human development and population size; all of which are impacted by climate change. We review the most critical drivers of Rangifer migration and how a rapidly changing Arctic may affect them. In order to conserve large Rangifer populations, they must be allowed free passage along their migratory routes to reach seasonal ranges. We also provide some pragmatic ideas to help conserve Rangifer migrations into the future.

2018 ◽  
Vol 26 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Conor D. Mallory ◽  
Mark S. Boyce

The ability of many species to adapt to the shifting environmental conditions associated with climate change will be a key determinant of their persistence in the coming decades. This is a challenge already faced by species in the Arctic, where rapid environmental change is well underway. Caribou and reindeer (Rangifer tarandus) play a key role in Arctic ecosystems and provide irreplaceable socioeconomic value to many northern peoples. Recent decades have seen declines in many Rangifer populations, and there is strong concern that climate change is threatening the viability of this iconic Arctic species. We examine the literature to provide a thorough and full consideration of the many environmental factors that limit caribou and reindeer populations, and how these might be affected by a warming climate. Our review suggests that the response of Rangifer populations to climate change is, and will continue to be, varied in large part to their broad circumpolar distribution. While caribou and reindeer could have some resilience to climate change, current global trends in abundance undermine all but the most precautionary outlooks. Ultimately, the conservation of Rangifer populations will require careful management that considers the local and regional manifestations of climate change.


2021 ◽  
Vol 13 (16) ◽  
pp. 9420
Author(s):  
Oran R. Young

Is the Arctic sufficiently distinctive and uniform to justify adopting a holistic perspective in thinking about the future of the region? Or do we need to acknowledge that the Arctic encompasses a number of different subregions whose futures may diverge more or less profoundly? In the aftermath of the Cold War, a view of the Arctic as a distinctive region with a policy agenda of its own arose in many quarters and played a prominent role in shaping initiatives such as the launching of the Arctic Environmental Protection Strategy in 1991 and the creation of the Arctic Council in 1996. Yet not everyone found this perspective persuasive at the time, and more recent developments have raised new questions about the usefulness of this perspective as a basis for thinking about the future of the Arctic. As a result, some observers take the view that we need to think more about future Arctics than about Arctic futures. Yet, today, climate change provides a central thread tying together multiple perspectives on the Arctic. The dramatic onset of climate change has turned the Arctic into the frontline with regard to the challenges of adapting to a changing biophysical setting. Ironically, the impacts of climate change also have increased the accessibility of massive reserves of hydrocarbons located in the Arctic, contributing to a feedback loop accelerating climate change. This means that the future of the Arctic will reflect the interplay between efforts to address the biophysical and socioeconomic consequences of climate change on the one hand and the influence of the driving forces underlying the political economy of energy development on the other.


Parasitology ◽  
2012 ◽  
Vol 139 (10) ◽  
pp. 1339-1345 ◽  
Author(s):  
BRYANNE M. HOAR ◽  
ALEXANDER G. EBERHARDT ◽  
SUSAN J. KUTZ

SUMMARYLarval inhibition is a common strategy of Trichostrongylidae nematodes that may increase survival of larvae during unfavourable periods and concentrate egg production when conditions are favourable for development and transmission. We investigated the propensity for larval inhibition in a population of Ostertagia gruehneri, the most common gastrointestinal Trichostrongylidae nematode of Rangifer tarandus. Initial experimental infections of 4 reindeer with O. gruehneri sourced from the Bathurst caribou herd in Arctic Canada suggested that the propensity for larval inhibition was 100%. In the summer of 2009 we infected 12 additional reindeer with the F1 and F2 generations of O. gruehneri sourced from the previously infected reindeer to further investigate the propensity of larval inhibition. The reindeer were divided into 2 groups and half were infected before the summer solstice (17 June) and half were infected after the solstice (16 July). Reindeer did not shed eggs until March 2010, i.e. 8 and 9 months post-infection. These results suggest obligate larval inhibition for at least 1 population of O. gruehneri, a phenomenon that has not been conclusively shown for any other trichostrongylid species. Obligate inhibition is likely to be an adaptation to both the Arctic environment and to a migratory host and may influence the ability of O. gruehneri to adapt to climate change.


Diversity ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 172 ◽  
Author(s):  
Ivana Svitková ◽  
Marek Svitok ◽  
Anton Petrík ◽  
Dana Bernátová ◽  
Dušan Senko ◽  
...  

Carex rupestris is an endangered and rare arctic-alpine element of the Western Carpathian flora. Given the geographically isolated and spatially restricted peripheral ranges of arctic-alpine species, there is a good chance that many species of conservation concern irreversibly disappear from the regional flora under the ongoing climate change. In this study, we gathered all existing data on the presence of C. rupestris and focused on its current and future distribution in the Western Carpathians. We found that although the distribution of the species is fragmented and scarce, C. rupestris occurs in several mountain ranges, in four distinct plant community types, which differ considerably in altitude, geological bedrock, and other habitat characteristics. In contrast to the relatively broad range of occupied habitats, C. rupestris shows a narrow temperature niche (mean annual temperature range 0.4–4.0 °C). Ensembles of small models based on climatic characteristics and local topography show that regardless of the climate change scenario (rcp2.6, rcp8.5), many current occurrence sites, mainly in the peripheral zones of the range, will face the excessive loss of suitable environmental conditions. It is expected that the Tatra Mountains will be the only mountain range retaining potentially suitable habitats and providing possible refugia for this cold-adapted species in the future. Such severe shrinkage of distribution ranges and associated geographic isolation raises serious concerns for the fate of the arctic-alpine species in the Western Carpathians.


Parasitology ◽  
2012 ◽  
Vol 139 (8) ◽  
pp. 1093-1100 ◽  
Author(s):  
BRYANNE M. HOAR ◽  
KATHREEN RUCKSTUHL ◽  
SUSAN KUTZ

SUMMARYClimate change in the Arctic is anticipated to alter the ecology of northern ecosystems, including the transmission dynamics of many parasite species. One parasite of concern is Ostertagia gruehneri, an abomasal nematode of Rangifer ssp. that causes reduced food intake, weight loss, and decreased pregnancy rates in reindeer. We investigated the development, availability, and overwinter survival of the free-living stages of O. gruehneri on the tundra. Fecal plots containing O. gruehneri eggs were established in the Northwest Territories, Canada under natural and artificially warmed conditions and sampled throughout the growing season of 2008 and the spring of 2009. Infective L3 were present 3–4 weeks post-establishment from all trials under both treatments, except for the trial established 4 July 2008 under warmed conditions wherein the first L3 was recovered 7 weeks post-establishment. These plots were exposed to significantly more time above 30°C than the natural plots established on the same date, suggesting a maximum temperature threshold for development. There was high overwinter survival of L2 and L3 across treatments and overwintering L2 appeared to develop to L3 the following spring. The impact of climate change on O. gruehneri is expected to be dynamic throughout the year with extreme maximum temperatures negatively impacting development rates.


Author(s):  
Daniel J Lunt ◽  
Alan M Haywood ◽  
Gavin L Foster ◽  
Emma J Stone

The Mid-Pliocene ( ca 3 Myr ago) was a relatively warm period, with increased atmospheric CO 2 relative to pre-industrial. It has therefore been highlighted as a possible palaeo-analogue for the future. However, changed vegetation patterns, orography and smaller ice sheets also influenced the Mid-Pliocene climate. Here, using a general circulation model and ice-sheet model, we determine the relative contribution of vegetation and soils, orography and ice, and CO 2 to the Mid-Pliocene Arctic climate and cryosphere. Compared with pre-industrial, we find that increased Mid-Pliocene CO 2 contributes 35 per cent, lower orography and ice-sheet feedbacks contribute 42 per cent, and vegetation changes contribute 23 per cent of Arctic temperature change. The simulated Mid-Pliocene Greenland ice sheet is substantially smaller than that of modern, mostly due to the higher CO 2 . However, our simulations of future climate change indicate that the same increase in CO 2 is not sufficient to melt the modern ice sheet substantially. We conclude that, although the Mid-Pliocene resembles the future in some respects, care must be taken when interpreting it as an exact analogue due to vegetation and ice-sheet feedbacks. These act to intensify Mid-Pliocene Arctic climate change, and act on a longer time scale than the century scale usually addressed in future climate prediction.


2017 ◽  
pp. 19-31
Author(s):  
E.M. Klyuchnikova ◽  
◽  
L.G. Isaeva ◽  
A.V. Masloboev ◽  
T.E. Alieva ◽  
...  

This article presents forecast of the future development of the key industries of the Murmansk region under the climate change conditions, and developments that can be used as the background for discussing measures for adaptation to climate changes and producing long-term documents. We have revealed a wide range of scenarios to identify the uncertainties that the region will inevitably face and that should be taken into account when making decisions already now. We have used the forecasting method taking into account the two critical parameters: the climate change on the regional level and the global trends in the socio-economic development. The narratives from the Shared Socioeconomic Pathways (SSPs) have been used as boundary conditions for creating scenarios of Murmansk region development. The local experts - representatives of industries, regional and local authorities, non-governmental and scientific organizations were involved in the forecasting process. The foresight research methodology was chosen because it is more than a long-term and strategic planning and forecasting corresponds to the social progress, in particular, the society democratization in its main areas: engaging citizens to managing the state affairs and creating conditions for manifestation of their initiatives. As a result, the issues of forecasting the future trends and challenges in the key sectors of the economy of the Arctic under the changing climate, depending on the forecast global development trends were considered. The necessity of using a structured, coherent to the global trends approach to working out regional and corporate development strategies is substantiated. On the example of the Murmansk region, the possible scenarios of development of the mining industry, and energy and human potentials depending on the global changes, including the climate change are considered.


2018 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Marina Suzuki

Abstract. There remain substantial uncertainties in future projections of Arctic climate change. Schmidt et al. (2014) demonstrated the potential to constrain these uncertainties using a combination of paleoclimate simulations and proxy data. They found a weak correlation between sea ice changes in the mid-Holocene (MH) and in future projections, relative to the modern period. Such an “emergent constraint” provides a powerful tool to directly reduce the range of uncertainty, provided that the necessary paleoenvironmental information is available. In the current study, we examine the relevance of Arctic warming in the past to the future through process understanding, rather than seeking a statistical relation. We conducted a surface energy balance analysis on 10 atmosphere and ocean general circulation models under the MH and future RCP4.5-scenario forcing. We found that many of the dominant processes that amplify Arctic warming from late autumn to winter are common between the two periods, despite the difference in the source of the forcing (insolation vs. greenhouse gases). We also quantified the contribution of individual processes to the inter-model variance in the surface temperature changes. The controlling term varies with the season, but the results suggest that the models’ representations of the surface albedo feedback, cloud greenhouse effect, turbulent surface heat fluxes, and indirect atmospheric stratification are important contributors. Based on the results for the Arctic warming mechanism obtained from this study, we conclude that proxy records of Arctic warming during the MH contain useful information that is relevant for understanding future Arctic climate change.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Rachael L. Johnstone

Of all the World‘s land that sits above the Arctic Circle, 40% is Russian territory. Half of the Arctic coastline is Russia. Three quarters of the Arctic‘s 4 million residents live in Russia, which hosts the two largest population centres, Murmansk and Norilsk (xxxi). The Russian Arctic produces 2/3 of all Arctic GDP (Arctic Human Development Report 2004, 75-76).


Sign in / Sign up

Export Citation Format

Share Document