scholarly journals Study On Nanohardness Of Phases Occurring In ZnAl22Cu3 And ZnAl40Cu3 Alloys

2015 ◽  
Vol 60 (2) ◽  
pp. 621-626 ◽  
Author(s):  
R. Michalik ◽  
B. Chmiela

Abstract Zn-Al alloys are mainly used due to their high tribological and damping properties. A very important issue is determination of the hardness of the phases present in the Zn-Al-Cu alloys. Unfortunately, in literature there is lack of studies on the hardness of the phases present in the alloys Zn-Al-Cu. The aim of this research was to determine the hardness of the phases present in the ZnAl22Cu3Si and ZnAl40Cu3Si alloys. The scope of the research included examination of the structure, chemical composition of selected micro-regions and hardness of phases present in the examined alloys. The research carried out has shown, that CuZn4 phase is characterized by a similar hardness as the hardness of the interdendritic areas. The phases present in the structure of ZnAl40Cu3 and ZnAl22Cu3 alloys after soaking at the temperature of 185 °C are characterized by lower hardness than the phase present in the structure of the as-cast alloys.

1988 ◽  
Vol 53 (8) ◽  
pp. 1735-1744 ◽  
Author(s):  
Jitka Horská ◽  
Jaroslav Stejskal ◽  
Pavel Kratochvíl ◽  
Aubrey D. Jenkins ◽  
Eugenia Tsartolia ◽  
...  

An attempt was made to prepare well-defined graft copolymers by the coupling reaction between acyl chloride groups located along the backbone chain and monohydroxy-terminated grafts prepared separately. The molecular weights and the parameters of heterogeneity in chemical composition of the products were determined by light scattering and osmometry. The determination of molecular characteristics revealed that the degree of grafting was low. The results therefore could not be confronted with a statistical model at this stage. The problems encountered in the synthesis, e.g., gel formation, and the data relating to the soluble products are discussed.


2021 ◽  
Vol 12 ◽  
pp. 1368-1379
Author(s):  
Vanja Asanović ◽  
Dragan Radonjić ◽  
Jelena Šćepanović ◽  
Darko Vuksanović

2015 ◽  
Vol 754-755 ◽  
pp. 1017-1022 ◽  
Author(s):  
Petrică Vizureanu ◽  
Mirabela Georgiana Minciună ◽  
Dragoş Cristian Achiţei ◽  
Andrei Victor Sandu ◽  
Kamarudin Hussin

.The paper present aspects about the obtaining of non-precious dental alloys (type CoCrMo and CoCrMoSi7), the determination of chemical composition by optical emission spectrometry and the experimental tests for determining the tensile strength, made on standard plate samples. The base material used in experiments was a commercial alloy, from CoCrMo system, which belongs to the class of dental non-precious alloys, intended to medical applications. The obtaining of studied alloy was made on arc re-melting installation, under vacuum, type MRF ABJ 900. The process followed to realize a rapid melting, with a maximum admissible current intensity. The samples for tests were obtained by casting in an electric arc furnace, under vacuum, in optimal conditions for melting and solidification and processing by electro-erosion, to eliminate all the disturbing factors which come by processing conditions for the samples. The determination of chemical composition for cobalt based alloys, by optical emission spectrometry, was made on SpectromaxX equipment with spark. The electrical discharge is made with the elimination of an energy quantity, fact which determine plasma forming and light issue. Tensile tests for standard samples, made from cobalt based alloy, was made on Instron 3382 testing machine, and assisted by computer. The obtained results are: elongation, elasticity modulus, tensile strength and offer complete information about the analyzed mechanical properties. For the certitude of obtained experimental results, the tests were made on samples with specific dimensions according ISO 6892-1:2009(E) standard, both for the tensile strength, and also machine operation.


2015 ◽  
Vol 669 ◽  
pp. 150-157
Author(s):  
Peter Michal ◽  
Alena Vagaská ◽  
Miroslav Gombár

Paper tracks experimentally confirmed relationship between chemical composition of electrolyte and resulting surface finish quality of created oxide layer during the process of anodic oxidation of aluminium. Examined chemical factors were: concentrations of sulphuric acid, oxalic acid, boric acid and sodium chloride. Aggressive effects of electrolyte were chosen as indicator of resulting layer quality – presence and extent of etching of used substrate sample.


2008 ◽  
Vol 579 ◽  
pp. 15-28 ◽  
Author(s):  
Carl C. Koch ◽  
Khaled M. Youssef ◽  
Ron O. Scattergood

This paper reviews a method, “in situ consolidation ball milling” that provides artifactfree bulk nanocrystalline samples for several ductile metals such as Zn, Al and Al alloys, and Cu and Cu alloys. The preparation method is described in this paper and examples of the mechanical behavior of nanocrystalline materials made by this technique are given. It is found that in such artifact-free metals, combinations of both high strength and good ductility are possible.


Sign in / Sign up

Export Citation Format

Share Document