scholarly journals Intelligent Self-Powered Sensors in the State-of-the-Art Control Systems of Mining Machines

2016 ◽  
Vol 61 (4) ◽  
pp. 907-915
Author(s):  
Dariusz Jasiulek ◽  
Krzysztof Stankiewicz ◽  
Mariusz Woszczyński

Abstract Perspectives of development of control system dedicated for areas threatened by methane and/or coal dust explosion hazard are presented. Development of self-powered sensors, dedicated for operation in wireless network is one of the development directions. Such a solution will complement typical control systems and it can be used in the places, where there is no possibility of using the typical sensors, in close vicinity to the machine – due to lack of wired connection. General concept of the self-powered sensors with use of two methods of power supply – piezoelectric energy harvester and thermoelectric generator, is given. Perspective of using the methods of artificial intelligence in automatic configuration of sensors network is suggested.

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 201
Author(s):  
Damiano Alizzio ◽  
Antonino Quattrocchi ◽  
Roberto Montanini

<p class="Abstract">In the interest of our society, for example in Smart City but also in other specific backgrounds, environmental monitoring is an essential activity to measure the quality of different ecosystems. In fact, the need to obtain accurate and extended measurements in space and time has considerably become relevant. In very large environments, such as marine ones, technological solutions are required for the use of smart, automatic, and self-powered devices in order to reduce human maintenance service. This work presents a simple and innovative layout for a small self-powered floating buoy, with the aim of measuring and transmitting the detected data for visualization, storage and/or elaboration. The power supply was obtained using a cantilever harvester, based on piezoelectric patches, converting the motion of ripple waves. Such type of waves is characterized by frequencies between 1.50 Hz and 2.50 Hz with oscillation between 5.0 ° and 7.0 °. Specifically, a dedicated experimental setup was created to simulate the motion of ripple waves and to evaluate the suitability of the proposed design and the performance of the used harvester. Furthermore, a dynamic analytical model for the harvester has been defined and the uncertainty correlated to the harvested power has been evaluated. Finally, the harvested voltage and power have shown how the presented buoy behaves like a frequency transformer. Hence, although the used cantilever harvester does not work in its resonant frequency, the harvested electricity undergoes a significant increase.</p><p class="Abstract"><span lang="EN-US"><br /></span></p>


Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Se Yeong Jeong ◽  
Jae Yong Cho ◽  
Seong Do Hong ◽  
Wonseop Hwang ◽  
Hamid Jabbar ◽  
...  

Piezoelectric devices previously studied usually generated a single voltage to power an electronic device. However, depending on the user’s purpose, the electronic device may need dual power supply. Here, we report a self-powered bipolar voltage generator using a piezoelectric energy harvester with two piezoelectric devices. When a force is applied to the piezoelectric energy harvester, the two piezoelectric devices separately supply positive and negative voltages to the operational amplifier that requires dual power supply to amplify an AC signal that have positive and negative polarity. At the same time, the harvester supplies additional power to an electronic device through a DC-to-DC converter with an output voltage of 3.3 V. This technique proves the feasibility of applying the piezoelectric energy harvester to operational amplifying systems in the field of sound, earthquake, and sonar that require both bipolar and single voltages without external power sources.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


2022 ◽  
Vol 184 ◽  
pp. 551-563
Author(s):  
Julien Le Scornec ◽  
Benoit Guiffard ◽  
Raynald Seveno ◽  
Vincent Le Cam ◽  
Stephane Ginestar

Author(s):  
Zhengbao Yang ◽  
Jean Zu

Energy harvesting from vibrations has become, in recent years, a recurring target of a quantity of research to achieve self-powered operation of low-power electronic devices. However, most of energy harvesters developed to date, regardless of different transduction mechanisms and various structures, are designed to capture vibration energy from single predetermined direction. To overcome the problem of the unidirectional sensitivity, we proposed a novel multi-directional nonlinear energy harvester using piezoelectric materials. The harvester consists of a flexural center (one PZT plate sandwiched by two bow-shaped aluminum plates) and a pair of elastic rods. Base vibration is amplified and transferred to the flexural center by the elastic rods and then converted to electrical energy via the piezoelectric effect. A prototype was fabricated and experimentally compared with traditional cantilevered piezoelectric energy harvester. Following that, a nonlinear conditioning circuit (self-powered SSHI) was analyzed and adopted to improve the performance. Experimental results shows that the proposed energy harvester has the capability of generating power constantly when the excitation direction is changed in 360. It also exhibits a wide frequency bandwidth and a high power output which is further improved by the nonlinear circuit.


2019 ◽  
Vol 256 ◽  
pp. 113916 ◽  
Author(s):  
Gyeong Ju Song ◽  
Jae Yong Cho ◽  
Kyung-Bum Kim ◽  
Jung Hwan Ahn ◽  
Yewon Song ◽  
...  

2014 ◽  
Vol 7 (12) ◽  
pp. 4035-4043 ◽  
Author(s):  
Chang Kyu Jeong ◽  
Kwi-Il Park ◽  
Jung Hwan Son ◽  
Geon-Tae Hwang ◽  
Seung Hyun Lee ◽  
...  

We present a self-powered all-flexible light-emitting optoelectronic device using a flexible and high-performance piezoelectric energy harvester with a robustly developed flexible and vertically structured inorganic LED array.


Sign in / Sign up

Export Citation Format

Share Document