scholarly journals GNSS Antenna Caused Near-Field Interference Effect in Precise Point Positioning Results

2017 ◽  
Vol 52 (2) ◽  
pp. 27-40
Author(s):  
Karol Dawidowicz ◽  
Radosław Baryła

Abstract Results of long-term static GNSS observation processing adjustment prove that the often assumed “averaging multipath effect due to extended observation periods” does not actually apply. It is instead visible a bias that falsifies the coordinate estimation. The comparisons between the height difference measured with a geometrical precise leveling and the height difference provided by GNSS clearly verify the impact of the near-field multipath effect. The aim of this paper is analysis the near-field interference effect with respect to the coordinate domain. We demonstrate that the way of antennas mounting during observation campaign (distance from nearest antennas) can cause visible changes in pseudo-kinematic precise point positioning results. GNSS measured height differences comparison revealed that bias of up to 3 mm can be noticed in Up component when some object (additional GNSS antenna) was placed in radiating near-field region of measuring antenna. Additionally, for both processing scenario (GPS and GPS/GLONASS) the scattering of results clearly increased when additional antenna crosses radiating near-field region of measuring antenna. It is especially true for big choke ring antennas. In short session (15, 30 min.) the standard deviation was about twice bigger in comparison to scenario without additional antenna. When we used typical surveying antennas (short near-field region radius) the effect is almost invisible. In this case it can be observed the standard deviation increase of about 20%. On the other hand we found that surveying antennas are generally characterized by lower accuracy than choke ring antennas. The standard deviation obtained on point with this type of antenna was bigger in all processing scenarios (in comparison to standard deviation obtained on point with choke ring antenna).

2016 ◽  
Vol 102 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Marcin Malinowski ◽  
Janusz Kwiecień

Abstract Precise Point Positioning (PPP) is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS), Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), GNSS Analysis and Positioning Software (GAPS) and magicPPP - Precise Point Positioning Solution (magicGNSS). On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ Final products.


2020 ◽  
Vol 12 (18) ◽  
pp. 3080
Author(s):  
Jinglei Zhang ◽  
Xiaoming Wang ◽  
Zishen Li ◽  
Shuhui Li ◽  
Cong Qiu ◽  
...  

Global navigation satellite systems (GNSSs) have become an important tool to derive atmospheric products, such as the total zenith tropospheric delay (ZTD) and precipitable water vapor (PWV) for weather and climate studies. The ocean tide loading (OTL) effect is one of the primary errors that affects the accuracy of GNSS-derived ZTD/PWV, which means the study and choice of the OTL model is an important issue for high-accuracy ZTD estimation. In this study, GNSS data from 1 January 2019 to 31 January 2019 are processed using precise point positioning (PPP) at globally distributed stations. The performance of seven widely used global OTL models is assessed and their impact on the GNSS-derived ZTD is investigated by comparing them against the ZTD calculated from co-located radiosonde observations. The results indicate that the inclusion or exclusion of the OTL effect will lead to a difference in ZTD of up to 3–15 mm for island stations, and up to 1–2 mm for inland stations. The difference of the ZTD determined with different OTL models is quite small, with a root-mean-square (RMS) value below 1.5 mm at most stations. The comparison between the GNSS-derived ZTD and the radiosonde-derived ZTD indicates that the adoption of OTL models can improve the accuracy of GNSS-derived ZTD. The results also indicate that the adoption of a smaller cutoff elevation, e.g., 3° or 7°, can significantly reduce the difference between the ZTDs determined by GNSS and radiosonde, when compared against a 15° cutoff elevation. Compared to the radiosonde-derived ZTD, the RMS error of GNSS-derived ZTD is approximately 25–35 mm at a cutoff elevation of 15°, and 15–25 mm when the cutoff elevation is set to 3°.


2021 ◽  
Vol 13 (16) ◽  
pp. 3164
Author(s):  
Lizhong Qu ◽  
Pu Zhang ◽  
Changfeng Jing ◽  
Mingyi Du ◽  
Jian Wang ◽  
...  

We investigate the estimation of the fractional cycle biases (FCBs) for GPS triple-frequency uncombined precise point positioning (PPP) with ambiguity resolution (AR) based on the IGS ultra-rapid predicted (IGU) orbits. The impact of the IGU orbit errors on the performance of GPS triple-frequency PPP AR is also assessed. The extra-wide-lane (EWL), wide-lane (WL) and narrow-lane (NL) FCBs are generated with the single difference (SD) between satellites model using the global reference stations based on the IGU orbits. For comparison purposes, the EWL, WL and NL FCBs based on the IGS final precise (IGF) orbits are estimated. Each of the EWL, WL and NL FCBs based on IGF and IGU orbits are converted to the uncombined FCBs to implement the static and kinematic triple-frequency PPP AR. Due to the short wavelengths of NL ambiguities, the IGU orbit errors significantly impact the precision and stability of NL FCBs. An average STD of 0.033 cycles is achieved for the NL FCBs based on IGF orbits, while the value of the NL FCBs based on IGU orbits is 0.133 cycles. In contrast, the EWL and WL FCBs generated based on IGU orbits have comparable precision and stability to those generated based on IGF orbits. The use of IGU orbits results in an increased time-to-first-fix (TTFF) and lower fixing rates compared to the use of IGF orbits. Average TTFFs of 23.3 min (static) and 31.1 min (kinematic) and fixing rates of 98.1% (static) and 97.4% (kinematic) are achieved for the triple-frequency PPP AR based on IGF orbits. The average TTFFs increase to 27.0 min (static) and 37.9 min (kinematic) with fixing rates of 97.0% (static) and 96.3% (kinematic) based on the IGU orbits. The convergence times and positioning accuracy of PPP and PPP AR based on IGU orbits are slightly worse than those based on IGF orbits. Additionally, limited by the number of satellites transmitting three frequency signals, the introduction of the third frequency, L5, has a marginal impact on the performance of PPP and PPP AR. The GPS triple-frequency PPP AR performance is expected to improve with the deployment of new-generation satellites capable of transmitting the L5 signal.


2021 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Bing Xue ◽  
Yunbin Yuan ◽  
Han Wang ◽  
Haitao Wang

Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is an attractive positioning technology due to its high precision and flexibility. However, the vulnerability of PPP brings a safety risk to its application in the field of life safety, which must be evaluated quantitatively to provide integrity for PPP users. Generally, PPP solutions are processed recursively based on the extended Kalman filter (EKF) estimator, utilizing both the previous and current measurements. Therefore, the integrity risk should be qualified considering the effects of all the potential observation faults in history. However, this will cause the calculation load to explode over time, which is impractical for long-time missions. This study used the innovations in a time window to detect the faults in the measurements, quantifying the integrity risk by traversing the fault modes in the window to maintain a stable computation cost. A non-zero bias was conservatively introduced to encapsulate the effect of the faults before the window. Coping with the multiple simultaneous faults, the worst-case integrity risk was calculated to overbound the real risk in the multiple fault modes. In order to verify the proposed method, simulation and experimental tests were carried out in this study. The results showed that the fixed and hold mode adopted for ambiguity resolution is critical to an integrity risk evaluation, which can improve the observation redundancy and remove the influence of the biased predicted ambiguities on the integrity risk. Increasing the length of the window can weaken the impact of the conservative assumption on the integrity risk due to the smoothing effect of the EKF estimator. In addition, improving the accuracy of observations can also reduce the integrity risk, which indicates that establishing a refined PPP random model can improve the integrity performance.


2018 ◽  
Vol 72 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Francesco Basile ◽  
Terry Moore ◽  
Chris Hill

With the evolving Global Navigation Satellite System (GNSS) landscape, the International GNSS Service (IGS) has started the Multi-GNSS Experiment (MGEX) to produce precise products for new generation systems. Various analysis centres are working on the estimation of precise orbits, clocks and bias for Galileo, Beidou and Quasi-Zenith Satellite System (QZSS) satellites. However, at the moment these products can only be used for post-processing applications. Indeed, the IGS Real-Time service only broadcasts Global Positioning System (GPS) and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) corrections. In this research, a simulator of multi-GNSS observations and real-time precise products has been developed to analyse the performance of GPS-only, Galileo-only and GPS plus Galileo Precise Point Positioning (PPP). The error models in the simulated orbits and clocks were based on the difference between the GPS Real-Time and the Final products. Multiple scenarios were analysed, considering different signals combined in the Ionosphere Free linear combination. Results in a simulated open area environment show better performance of the Galileo-only case over the GPS-only case. Indeed, up 33% and 29% of improvement, respectively, in the accuracy level and convergence time can be observed when using the full Galileo constellation compared to GPS. The dual constellation case provides good improvements, in particular in the convergence time (47% faster than GPS). This paper will also consider the impact of different linear combinations of the Galileo signals, and the potential of the E5 Alternative Binary Offset Carrier (AltBOC) signal. Even though it is significantly more precise than E5a, the PPP performance obtained with the Galileo E1-E5a combination is either better or similar to the one with Galileo E1-E5. The reason for this inconsistency was found in the use of the ionosphere free combination with E1. Finally, alternative methods of ionosphere error mitigation are considered in order to ensure the best possible positioning performance from the Galileo E5 signal in multi-frequency PPP.


Author(s):  
Ciro Gioia ◽  
Daniele Borio ◽  
Eugenio Realini ◽  
Andrea Gatti ◽  
Giulio Tagliaferro

2020 ◽  
Vol 12 (14) ◽  
pp. 2185 ◽  
Author(s):  
Wen Zhao ◽  
Hua Chen ◽  
Yang Gao ◽  
Weiping Jiang ◽  
Xuexi Liu

The BeiDou navigation satellite system (BDS) currently has 41 satellites in orbits and will reach its full constellation following the launch of the last BDS satellite in June 2020 to provide navigation, positioning, and timing (PNT) services for global users. In this contribution, we investigate the characteristics of inter-system bias (ISB) between BDS-2 and BDS-3 and verify whether an additional ISB parameter should be introduced for the BDS-2 and BDS-3 precise point positioning (PPP). The results reveal that because of different clock references applied for BDS-2 and BDS-3 in the International GNSS Service (IGS) precise satellites clock products and the inconsistent code hardware delays of BDS-2 and BDS-3 for some receiver types, an ISB parameter needs to be introduced for BDS-2 and BDS-3 PPP. Further, the results show that the ISB can be regarded as a constant within a day, the value of which is closely related to the receiver type. The ISB values of the stations with the same receiver type are similar to each other, but a great difference may be presented for different receiver types, up to several meters. In addition, the impact of ISB on PPP has also been studied, which demonstrates that the performance of kinematic PPP could be improved when ISB is introduced.


2020 ◽  
Vol 14 (2) ◽  
pp. 191-204
Author(s):  
Emerson Pereira Cavalheri ◽  
Marcelo Carvalho dos Santos

AbstractA positioning approach combining satellite measurements with a map representing the ground-truth trajectory is developed with the main objective of improving the availability of solutions for a mobile vehicle. For the positioning model, the Precise Point Positioning (PPP) technique is augmented with an alternative map-matching to find a probable space where the true vehicle or platform position is located. Then, by using a selection criterion based on the precise carrier phase residuals, the best candidate position within the space can be determined. This process provides an accurate initial position to the PPP filter, different from the standard PPP approach that relies on a point position using the less accurate pseudorange observables. A controlled experiment of a mobile receiver navigating over a pre-defined trajectory was conducted. The results show that the approach offers an instantaneous initial convergence, eliminating the re-convergences during two GNSS obstructions of 32 and 17 seconds, while constantly keeping the solution on the correct trajectory, even when tracking 3 to 2 satellites. This approach outperforms the standard PPP and RTK solutions in terms of convergences and re-convergences. These results are corroborated when comparing the average and standard deviation of residuals to the standard PPP model. For the pseudorange residuals, improvements of 17.5 cm and 24.3 cm in the average and standard deviation respectively were achieved. The carrier phase residuals standard deviation of the proposed approach was 3 cm better than that of the standard PPP.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1596
Author(s):  
Pengli Shen ◽  
Fang Cheng ◽  
Xiaochun Lu ◽  
Xia Xiao ◽  
Yulong Ge

A quality evaluation of precise products for BDS-3 constellations is presented for the first time in this contribution. Then, the tropospheric delay retrieval and positioning performance of BDS-3 precise point positioning (PPP) solutions using the precise products (gbm, wum, iac, sha, cnt) with observations from 24 stations from DOY 280 to 317 in 2020 was comprehensively investigated. The orbit comparisons present consistencies of 0.09–0.22 m for the C19–C37 satellites and of 0.5–1.2 m for the C38–C46 satellites among the final products. The standard deviation (STD) values of the clock differences of iac showed the best agreement with those of gbm, followed by wum, sha. The clock differences performance of cnt was the worst. For BDS-3 PPP solutions with five Analysis centers (ACs) products, the median convergence times of static PPP mode incorporating the gbm, wum, iac, sha, and cnt products were 31.0, 33.5, 34.5, 37.8, and 72.0 min, respectively; the median convergence times of kinematic PPP model incorporating the same products were 40.5, 41.0, 50.5, 55.0, and 94.0 min, respectively. The positioning accuracies in the static and kinematic modes were approximately 1–4 cm, 2–6 cm in the horizontal and vertical components, respectively. With the final products in kinematic mode, the performance of PPP with real-time products (cnt) is poorer than all PPP with final products. The median of ZTD accuracies of the five products gbm, wum, iac, sha, and cnt were 7.84, 7.58, 7.04, 7.19, and 10.1 mm, respectively, and the accuracy differences were very small among five AC products (gbm, wum, iac, sha).


2018 ◽  
Vol 10 (2) ◽  
pp. 94 ◽  
Author(s):  
Xinyun Cao ◽  
Shoujian Zhang ◽  
Kaifa Kuang ◽  
Tianjun Liu ◽  
Kang Gao

Sign in / Sign up

Export Citation Format

Share Document