scholarly journals Modeling of Energy Release at the Final Stage of the Meteoroid Movement

2016 ◽  
Vol 27 (1) ◽  
pp. 290-293
Author(s):  
Lidia A. Egorova ◽  
Valery V. Lokhin

Abstract The paper continues to build upon the author’s previous research on fireballs fragmentation. A model of the sudden explosive destruction of the cosmic body at the height of the maximum flash is used. After the fragmentation, the kinetic energy of the moving particles of a meteoroid passes into the thermal energy of the gas volume inwhich their motion takes place. The temperature of a gas cloud calculated analytically using energy conservation lawand equations of physical theory of meteors. The mass distribution of fragments was taken from the literature. The high temperature of the gas in a cloud allows us to talk about the phenomenon of a "thermal explosion".

Author(s):  
Kaiyue Shen ◽  
Wei Zheng ◽  
Shengchao Ma ◽  
Huaqiang Yin ◽  
Xuedong He ◽  
...  

Abstract A large number of carbon materials are used in high temperature gas-cooled reactor (HTGR). As a kind of porous material, the carbon material contains a certain amount of moisture and other impurities. In order to reduce the corrosion of internal material in reactor core of HTGR, the initial core or post-accident core must be strictly heated and dehumidified. The current primary circuit heating mainly relies on the rotation of the primary pump to convert the kinetic energy into thermal energy. Obviously, the current scheme was flawed: (1) Due to the insufficient heat generated by rotation of the primary pump, the temperature rising process of the primary circuit is sluggish; (2) The rotation of the primary pump converts the kinetic energy into thermal energy of the helium, at the meantime, the primary circuit dissipates heat outward. For the above reasons, it is difficult to achieve the desired dehumidification temperature in the heating process. While in this paper, an additional thermal source will be added to the steam generator to heat the primary circuit in a new scheme. A proper flow and heat-transfer model of heating the primary circuit in high-temperature reactor was established based on software COMSOL Multiphysics. The numerical analysis of the primary circuit heating process provides rewarding guidance for the selection of the dehumidification scheme in HTGR.


2019 ◽  
Vol 58 (2) ◽  
pp. 213-230 ◽  
Author(s):  
Jielun Sun

AbstractConservation of total, kinetic, and thermal energy in the atmosphere is revisited, and the derived thermal energy balance is examined with observations. Total energy conservation (TEC) provides a constraint for the sum of kinetic, thermal, and potential energy changes. In response to air thermal expansion/compression, air density variation leads to vertical density fluxes and potential energy changes, which in turn impact the thermal energy balance as well as the kinetic energy balance due to the constraint of TEC. As vertical density fluxes can propagate through a large vertical domain to where local thermal expansion/compression becomes negligibly small, interactions between kinetic and thermal energy changes in determining atmospheric motions and thermodynamic structures can occur when local diabatic heating/cooling becomes small. The contribution of vertical density fluxes to the kinetic energy balance is sometimes considered but that to the thermal energy balance is traditionally missed. Misinterpretation between air thermal expansion/compression and incompressibility for air volume changes with pressure under a constant temperature would lead to overlooking important impacts of thermal expansion/compression on air motions and atmospheric thermodynamics. Atmospheric boundary layer observations qualitatively confirm the contribution of potential energy changes associated with vertical density fluxes in the thermal energy balance for explaining temporal variations of air temperature.


Energy ◽  
2021 ◽  
pp. 121105
Author(s):  
Caleb Amy ◽  
Mehdi Pishahang ◽  
Colin Kelsall ◽  
Alina LaPotin ◽  
Asegun Henry

2021 ◽  
Vol 11 (13) ◽  
pp. 6234
Author(s):  
Ciprian Neagoe ◽  
Ioan Albert Tudor ◽  
Cristina Florentina Ciobota ◽  
Cristian Bogdanescu ◽  
Paul Stanciu ◽  
...  

Microencapsulation of sodium nitrate (NaNO3) as phase change material for high temperature thermal energy storage aims to reduce costs related to metal corrosion in storage tanks. The goal of this work was to test in a prototype thermal energy storage tank (16.7 L internal volume) the thermal properties of NaNO3 microencapsulated in zinc oxide shells, and estimate the potential of NaNO3–ZnO microcapsules for thermal storage applications. A fast and scalable microencapsulation procedure was developed, a flow calorimetry method was adapted, and a template document created to perform tank thermal transfer simulation by the finite element method (FEM) was set in Microsoft Excel. Differential scanning calorimetry (DSC) and transient plane source (TPS) methods were used to measure, in small samples, the temperature dependency of melting/solidification heat, specific heat, and thermal conductivity of the NaNO3–ZnO microcapsules. Scanning electron microscopy (SEM) and chemical analysis demonstrated the stability of microcapsules over multiple tank charge–discharge cycles. The energy stored as latent heat is available for a temperature interval from 303 to 285 °C, corresponding to onset–offset for NaNO3 solidification. Charge–self-discharge experiments on the pilot tank showed that the amount of thermal energy stored in this interval largely corresponds to the NaNO3 content of the microcapsules; the high temperature energy density of microcapsules is estimated in the range from 145 to 179 MJ/m3. Comparison between real tank experiments and FEM simulations demonstrated that DSC and TPS laboratory measurements on microcapsule thermal properties may reliably be used to design applications for thermal energy storage.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4379
Author(s):  
Max Hesselbrandt ◽  
Mikael Erlström ◽  
Daniel Sopher ◽  
Jose Acuna

Assessing the optimal placement and design of a large-scale high temperature energy storage system in crystalline bedrock is a challenging task. This study applies and evaluates various methods and strategies for pre-site investigation for a potential high temperature borehole thermal energy storage (HT-BTES) system at Linköping in Sweden. The storage is required to shift approximately 70 GWh of excess heat generated from a waste incineration plant during the summer to the winter season. Ideally, the site for the HT-BTES system should be able to accommodate up to 1400 wells to 300 m depth. The presence of major fracture zones, high groundwater flow, anisotropic thermal properties, and thick Quaternary overburden are all factors that play an important role in the performance of an HT-BTES system. Inadequate input data to the modeling and design increases the risk of unsatisfactory performance, unwanted thermal impact on the surroundings, and suboptimal placement of the HT-BTES system, especially in a complex crystalline bedrock setting. Hence, it is crucial that the subsurface geological conditions and associated thermal properties are suitably characterized as part of pre-investigation work. In this study, we utilize a range of methods for pre-site investigation in the greater Distorp area, in the vicinity of Linköping. Ground geophysical methods, including magnetic and Very Low-Frequency (VLF) measurements, are collected across the study area together with outcrop observations and lab analysis on rock samples. Borehole investigations are conducted, including Thermal Response Test (TRT) and Distributed Thermal Response Test (DTRT) measurements, as well as geophysical wireline logging. Drone-based photogrammetry is also applied to characterize the fracture distribution and orientation in outcrops. In the case of the Distorp site, these methods have proven to give useful information to optimize the placement of the HT-BTES system and to inform design and modeling work. Furthermore, many of the methods applied in the study have proven to require only a fraction of the resources required to drill a single well, and hence, can be considered relatively efficient.


Author(s):  
Andrea Zambotti ◽  
Edoardo Caldesi ◽  
Massimo Pelizzari ◽  
Francesco Valentini ◽  
Alessandro Pegoretti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document