Semantic interoperability in IoT-based automation infrastructures

2016 ◽  
Vol 64 (9) ◽  
Author(s):  
Reinhard Herzog ◽  
Michael Jacoby ◽  
Ivana Podnar Žarko

AbstractThe paper analyses and compares the different approaches to achieve semantic interoperability of the most influential IoT reference architectures, namely the Industrial Internet Reference Architecture, Reference Architecture Model Industrie 4.0, ISO/IEC Internet of Things Reference Architecture, the Internet of Things – Architecture (IoT-A) and oneM2M functional architecture.

Author(s):  
Konstantinos Kotis ◽  
Artem Katasonov

Internet of Things should be able to integrate an extremely large amount of distributed and heterogeneous entities. To tackle heterogeneity, these entities will need to be consistently and formally represented and managed (registered, aligned, composed and queried) trough suitable abstraction technologies. Two distinct types of these entities are a) sensing/actuating devices that observe some features of interest or act on some other entities (call it ‘smart entities’), and b) applications that utilize the data sensed from or sent to the smart entities (call it ‘control entities’). The aim of this paper is to present the Semantic Smart Gateway Framework for supporting semantic interoperability between these types of heterogeneous IoT entities. More specifically, the paper describes an ontology as the key technology for the abstraction and semantic registration of these entities, towards supporting their automated deployment. The paper also described the alignment of IoT entities and of their exchanged messages. More important, the paper presents a use case scenario and a proof-of-concept implementation.


Author(s):  
Issmat Shah Masoodi ◽  
Bisma Javid

There are various emerging areas in which profoundly constrained interconnected devices connect to accomplish specific tasks. Nowadays, internet of things (IoT) enables many low-resource and constrained devices to communicate, do computations, and make smarter decisions within a short period. However, there are many challenges and issues in such devices like power consumption, limited battery, memory space, performance, cost, and security. This chapter presents the security issues in such a constrained environment, where the traditional cryptographic algorithms cannot be used and, thus, discusses various lightweight cryptographic algorithms in detail and present a comparison between these algorithms. Further, the chapter also discusses the power awakening scheme and reference architecture in IoT for constrained device environment with a focus on research challenges, issues, and their solutions.


Author(s):  
Vishwas D. B. ◽  
Gowtham M. ◽  
Gururaj H. L. ◽  
Sam Goundar

In the era of mechanical digitalization, organizations are progressively putting resources into apparatuses and arrangements that permit their procedures, machines, workers, and even the products themselves to be incorporated into a solitary coordinated system for information assortment, information examination, the assessment of organization advancement, and execution improvement. This chapter presents a reference guide and review for propelling an Industry 4.0 venture from plan to execution, according to base on the economic and scientific policy of European parliament, applying increasingly effective creation forms, and accomplishing better profitability and economies of scale may likewise bring about expanded financial manageability. This chapter present the contextual analysis of a few Industry 4.0 applications. Authors give suggestions coordinating the progression of Industry 4.0. This section briefly portrays the advancement of IIoT 4.0. The change of ubiquitous computing through the internet of things has numerous difficulties related with it.


2013 ◽  
Vol 278-280 ◽  
pp. 2012-2015
Author(s):  
Lian Shi Lin ◽  
Qing Hu ◽  
Yu Ping Qui

The Internet of things is a massive electronic equipment with internet interconnection of large scale virtual networks, including RFID, sensor and actuator electronic devices by the internet interconnection. In order to solve internet of things architecture intelligent refrigerator key technologies, The paper had discussed the internet of things architecture intelligent refrigerator definition, characteristic as well as reference architecture, focused on analysis intelligent refrigerator information space definition, information quantification method and mobile platform equipment internet of things key technology main problems and corresponding solution ways.


Author(s):  
Yu. MELESHKO

The article considers the problems of the development of the industrial Internet of things in the Republic of Belarus as one of the system-forming technologies in the industrial sector. Based on the analysis of terminological features of the Internet of things, the concept and main characteristics of the industrial Internet of things are revealed. The economic consequences of using this technology in industrial production are shown. The formation and development of the Internet market of things in the Republic of Belarus in the context of its infrastructure component, spheres of use, main producers and consumers is considered. The factors preventing the wider use of the Internet of things in the industry of Belarus, and the development prospects of the market under consideration are revealed.


2019 ◽  
pp. 331-340
Author(s):  
Todorka Glushkova ◽  
Stanimir Stoyanov ◽  
Asya Stoyanova-Doycheva ◽  
Vanya Ivanova ◽  
Lyubka Doukovska

The concept of the Internet of Things (IoT) is closely related to the concepts of Cyber-Physical System (CPS) and Cyber-Physical-Social System (CPSS). A key feature of these technologies is the integration of the virtual and physical world. In this paper, an environment for ambient-oriented modeling called AmbiNet is presented. The environment AmbiNet is implemented as a component of the reference architecture known as Virtual Physical Space (ViPS) that can be adapted for CPSS applications in various domains, for example a smart city, a personal touristic guide, or education. The need for virtualization of things from the physical world in a formal way is also considered. In the paper, the usability of the environment is demonstrated by modeling of services delivered to tourists in an intelligent city. The architecture of ViPS is also briefly described. Furthermore, the virtualization and modeling of spatial aspects through the AmbiNet formalism is demonstrated by an example.


2021 ◽  
Vol 16 (92) ◽  
pp. 72-81
Author(s):  
Emil A. Gumerov ◽  
◽  
Tamara V. Alekseeva ◽  

Cyber-physical systems are a means of effectively managing industrial applications of the Internet of things. Physical layer cyber-physical system implements the control devices of the industrial Internet of things and intelligent algorithms digital system level provide management and information security applications. Effective management and information security determine the success of the industrial Internet of things, so the research topic is relevant. The purpose of this article is to develop an optimal architecture of a cyber-physical system based on the principles of data processing at the place of their occurrence and the application of a control action at the place of the problem occurrence. The authors were faced with the task of exploring all the possibilities associated with the application of the proposed principles and developing an optimal application architecture for the industrial Internet of things. In the study proposed the concept of intelligent application of industrial Internet of things, which enables processing of continuously generated data in their source and provides application control action to the location of the problem. The proposed solution: a) increases the information security of the industrial application of the Internet of things (data is not transmitted over the network) and b) prevents an attack on the software of the Industrial application of the Internet of things. The solution can be used by developers of industrial IoT systems to effectively launch and implement projects


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Min Qi ◽  
Junshu Wang

This paper builds an intelligent E-Government platform based on the Internet of Things. It adopts a three-layer architecture model, including the government collection layer, the government network layer, and the government application layer. By making full use of data technology and information technology, government services can be realized in real-time perception, efficient operation, scientific decision-making, active service, and intelligent supervision and can be open and collaborative, so as to provide the public with better quality and more efficient and more responsive government services. In addition, this paper has realized optimization in the aspects of government service mode, Internet of Things application mode, and database structure. Through the use of big data technology, the government service information will be digitized and integrated, and through the data sharing and exchange platform, the government information resources will be intercommunicated and shared across departments, levels, and regions. The application mode has been upgraded. Compared with the traditional E-Government, the government has made a qualitative leap in the degree of automation of control, the intelligence of service and decision, the remote support ability, and the space-time scope that government can control. The distributed management mode of the SQL Server is adopted to realize the exchange of requested data and process the data content, which can greatly improve the working efficiency of the system. Finally, through testing, the government affairs management system has good stability; there is no congestion and delay when multiple users access the system, so the response speed and efficiency of the system basically meet the requirements.


Sign in / Sign up

Export Citation Format

Share Document