scholarly journals Bacterial Infection Potato Tuber Soft Rot Disease Detection Based on Electronic Nose

2017 ◽  
Vol 12 (1) ◽  
pp. 379-385 ◽  
Author(s):  
Zhiyong Chang ◽  
Jianhua Lv ◽  
Hongyan Qi ◽  
Yunhai Ma ◽  
Donghui Chen ◽  
...  

AbstractSoft rot is a severe bacterial disease of potatoes, and soft rot infection can cause significant economic losses during the storage period of potatoes. In this study, potato soft rot was selected as the research object, and a type of potato tuber soft rot disease early detection method based on the electronic nose technology was proposed. An optimized bionic electronic nose gas chamber and a scientific and reasonable sampling device were designed to detect a change in volatile substances of the infected soft rot disease of potato tuber. The infection of soft rot disease in potato tuber samples was detected and identified by using the RBF NN algorithm and SVM algorithm. The results revealed that the proposed bionic electronic nose system can be utilized for early detection of potato tuber soft rot disease. Through comparison and analysis, the recognition rate using the SVM algorithm reached up to 89.7%, and the results were superior to the RBF NN algorithm.

Agrikultura ◽  
2016 ◽  
Vol 27 (3) ◽  
Author(s):  
Noor Istifadah ◽  
Muhamad Salman Umar ◽  
Sudarjat Sudarjat ◽  
Luciana Djaya

ABSTRACTThe abilities of endophytic bacteria from potato roots and tubers to suppress soft rot disease (Erwinia carotovora pv. carotovora) in potato tuberSoft rot disease caused by Erwinia carotovora pv. carotovora is one of limiting factors in cultivation and post harvest of potato. The eco-friendly control measure that can be developed for controlling the diseases is biological control. Microbes that are potential as biological control agents include endophytic bacteria. This paper discussed the results of study examining the potential of endophytic bacteria isolated from roots and tubers of potato to inhibit the growth of E. carotovora pv. carotovora in vitro and suppress soft rot disease in potato tuber. The results showed that among 24 isolates examined, four isolates of endophytic bacteria (one isolate from potato tuber and three isolates from potato roots) inhibited the growth of E. carotovora pv. carotovora in vitro with inhibition zone 3.5-6.8 mm. In the in vivo test, the isolates inhibited the soft rot disease in potato tuber by 71.5-86.4%. The isolate that tended to show relatively better inhibition in vitro and in vivo was isolate from potato tuber which is CK U3 (Lysinibacillus sp.)Keywords: Biological control, Endophytic bacteria, Post-harvest, Potato, Soft rot diseaseABSTRAKPenyakit busuk lunak yang disebabkan bakteri Erwinia carotovora pv. carotovora, merupakan salah satu kendala dalam budidaya dan pascapanen kentang. Cara pengendalian ramah lingkungan yang dapat dikembangkan untuk menekan penyakit tersebut adalah pengendalian biologi. Kelompok mikroba yang berpotensi sebagi agens pengendali biologi adalah bakteri endofit. Artikel ini mendiskusikan potensi isolat bakteri endofit yang berasal dari ubi dan akar kentang untuk menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dan menekan perkembangan penyakit busuk lunak pada ubi kentang. Hasil percobaan menunjukkan bahwa diantara 24 isolat bakteri yang diuji, terdapat empat isolat bakteri endofit (satu isolat dari ubi kentang dan tiga isolat dari akar kentang) yang dapat menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dengan zona penghambatan sebesar 3,5-6,8 mm. Pada pengujian secara in vivo, isolat-isolat tersebut dapat menekan perkembangan penyakit busuk lunak pada ubi kentang sebesar 71,5-86,4%. Isolat yang cenderung menunjukkan penghambatan relatif lebih baik secara in vitro dan in vivo adalah isolat bakteri endofit asal ubi kentang yaitu isolat CK U3 (Lysinibacillus sp.).Kata Kunci: Pengendalian biologi, Bakteri endofit, Pascapanen, Kentang, Penyakit busuk basah


Biosensors ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 64 ◽  
Author(s):  
Mahdis Hashemi Tameh ◽  
Elisabetta Primiceri ◽  
Maria Serena Chiriacò ◽  
Palmiro Poltronieri ◽  
Masoud Bahar ◽  
...  

Pectobacterium atrosepticum (Pba) is a quarantine and threatening phytopathogen known as the causal agent of blackleg and soft rot disease of potatoes in many areas. Its early detection is then important to have healthy potato tubers and reduce economic losses. Today, conventional methods such as enzyme-linked immunosorbent-assay (ELISA) and polymerase chain reaction (PCR) are typically used for Pba detection, but they are expensive and time-consuming. Here we report on the optimization of an alternative approach based on an electrochemical impedance immunosensor combining a microfluidic module and a microelectrodes array, and having advantages in terms of low cost, ease of use and portability. For validation and for assessing its performance, the lab-on-chip platform has been compared with two standard methods (ELISA and PCR).


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Nasr A. Ghazy ◽  
Omnia A. Abd El-Hafez ◽  
A. M. El-Bakery ◽  
Dalia I. H. El-Geddawy

Abstract Background Soft rot disease caused by Pectobacterium carotovorum was observed in various crops which lead to yield shortages and economic losses. Main body Therefore, both in vitro and in vivo experiments, aim to assess the effect of nanoparticles and biological treatments to control soft rot disease in sugar beet plant. The treatments comprised three silver nanoparticles (Ag NPs) concentrations (50, 75, and 100 ppm), three Spirulina platensis extract concentrations (50, 75, and 100%), and Bacillus subtilis (1 × 109 CFU ml) 100%. Under in vitro condation, results of the antibacterial activity showed that the zones of inhibition recorded 4.33 cm for 100 ppm Ag NPs, 0.43 cm for 100% algal extract, and 0.2 cm for bacterial treatments. Also, disease incidence % of bacterial soft rot was significantly decreased in all treatments in pot and field experiments. For resistant enzymes activity, B. subtilis 100% showed the most effect (84 mg min−1), followed by S. platensis extract 75%, (57 mg min−1), and Ag NPs 75 ppm (44 mg min−1), for poly phenol oxidase (PPO) at 81 days after sowing (DAS), but at 102 DAS revealed opposite results. On the contrary, peroxidase (PO) at 81 DAS showed different effects where treatment with S. platensis extract 100% increased it significantly (0.546 mg min−1) compared to control (0.535 mg min−1). The same trend was observed at 102 DAS. These results were reflected on sugar quality where Ag NPs 100 ppm treatment recorded the highest significant value (20.5%) followed by S. platensis 75% (19 %); however, the differences among them were not statistically significant. Conclusion This study indicated that the potential benefits of using silver nanoparticles and two biological treatments to control soft rot disease in sugar beet (Beta vulgaris L).


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Hassan Abd-El-Khair ◽  
Tarek G. Abdel-Gaied ◽  
Maurice S. Mikhail ◽  
Ahmed I. Abdel-Alim ◽  
Hamdy I. Seif El-Nasr

Abstract Background Several chemical bactericides were applied for controlling soft rot bacteria, Pectobacterium carotovorum subsp. carotovorum, which causes the destructive soft rot disease to many economically important vegetables, but because of their toxic hazards on human and environment became limit. The biocontrol was applied to control many plant pathogens. Therefore, this work is aimed to study the antagonistic activity of bacterial agents, i.e. Bacillus subtilis, Bacillus pumilus, Bacillus megaterium and Pseudomonas fluorescens, and fugal agents, i.e. Trichoderma harzianum, Trichoderma viride and Trichoderma virens, to control bacterial soft rot disease under in vitro and in vivo tests. Results The tested treatments could protect the potato tubers against the development of soft rot. T. viride and T. virens were highly effective in reducing soft rot symptoms on inoculated potato tuber slices, when applied at the same time or 2 h before pathogen inoculation, while B. megaterium and T. harzianum were highly effective when applied at the same time or 2 h after pathogen inoculation. In whole potato tubers technique, B.pumilus highly protected the stored potato tuber under artificially infection conditions, than P. fluorescens, T. harzianum, B. subtilis, T. viride, T. virens and B. megaterium, respectively. Conclusion Application of fungal agents or specify the bacterial species can play an important role in controlling bacterial soft rot disease in vegetables and increase the stored periods of potato tubers under storage conditions without any toxic effects.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2572
Author(s):  
Lin-Jiang Pang ◽  
Muhammed Adeel ◽  
Noman Shakoor ◽  
Ke-Rui Guo ◽  
Dai-Fu Ma ◽  
...  

About 45% of the world’s fruit and vegetables are wasted, resulting in postharvest losses and contributing to economic losses ranging from $10 billion to $100 billion worldwide. Soft rot disease caused by Rhizopus stolonifer leads to postharvest storage losses of sweet potatoes. Nanoscience stands as a new tool in our arsenal against these mounting challenges that will restrict efforts to achieve and maintain global food security. In this study, three nanomaterials (NMs) namely C60, CuO, and TiO2 were evaluated for their potential application in the restriction of Rhizopus soft rot disease in two cultivars of sweet potato (Y25, J26). CuO NM exhibited a better antifungal effect than C60 and TiO2 NMs. The contents of three important hormones, indolepropionic acid (IPA), gibberellic acid 3 (GA-3), and indole-3-acetic acid (IAA) in the infected J26 sweet potato treated with 50 mg/L CuO NM were significantly higher than those of the control by 14.5%, 10.8%, and 24.1%. CuO and C60 NMs promoted antioxidants in both cultivars of sweet potato. Overall, CuO NM at 50 mg/L exhibited the best antifungal properties, followed by TiO2 NM and C60 NM, and these results were further confirmed through scanning electron microscope (SEM) analysis. The use of CuO NMs as an antifungal agent in the prevention of Rhizopus stolonifer infections in sweet potatoes could greatly reduce postharvest storage and delivery losses.


2021 ◽  
Author(s):  
Renata Lebecka ◽  
Jadwiga Śliwka ◽  
Anna Grupa-Urbańska ◽  
Katarzyna Szajko ◽  
Waldemar Marczewski

AbstractSoft rot is a bacterial disease that causes heavy losses in potato production worldwide. The goal of this study was to identify quantitative trait loci (QTLs) for potato tuber resistance to bacteriumDickeya solaniand for tuber starch content to study the relationship between these traits. A highly resistant diploid hybrid of potato was crossed with a susceptible hybrid to generate the F1 mapping population. Tubers that were wound-inoculated with bacteria were evaluated for disease severity expressed as the mean weight of rotted tubers, and disease incidence measured as the proportion of rotten tubers. Diversity array technology (DArTseq™) was used for genetic map construction and QTLs analysis. The most prominent QTLs for disease severity and incidence were identified in overlapping regions on potato chromosome IV and explained 22.4% and 22.9% of the phenotypic variance, respectively. The second QTL for disease severity was mapped to chromosome II and explained 16.5% of the variance. QTLs for starch content were detected on chromosomes III, V, VI, VII, VIII, IX, XI, and XII in regions different than the QTLs for soft rot resistance. Two strong and reproducible QTLs for resistance toDickeya solanion potato chromosomes IV and II might be useful for further study of candidate genes and marker development in potato breeding programs. The relationship between tuber resistance to bacteria and the starch content in potato tubers was not confirmed by QTL mapping, which makes the selection of genotypes highly resistant to soft rot with a desirable starch content feasible.


2021 ◽  
Vol 4 (2) ◽  
pp. 1077-1086
Author(s):  
Nguyen Thanh Trung ◽  
Nguyen Thi Van Anh ◽  
Tran Thi Dao ◽  
Nguyen Thanh Huyen ◽  
Pham Le Anh Minh ◽  
...  

Erwinia is a genus of Enterobacteriacea containing mostly pathogens, which cause soft rot disease in many ornamental plants and crops, including Asparagus officinalis. Chemical treatments to control Erwinia have lost their attractiveness because of the development of resistant strains and the negative impacts on the environment and human health. Therefore, the study of biological controls of soft rot disease has gained great importance. There are several types of microorganisms that show activity against Erwinia spp. such as Pseudomonas fluorescence, Bacillus subtilis, and Streptomyces spp. Among them, Streptomyces spp. are found to be the most effective control agents. In this study, 64 isolates of Streptomyces were screened for their antibacterial activity against Erwinia spp. The results indicated that 18 isolates showed an antagonistic reaction against Erwinia spp. Among them, isolate D5.1 showed the highest inhibition activity. In addition, the morphological and antibacterial activities of isolate D5.1 grown in different conditions were also characterized. 


2022 ◽  
Author(s):  
Yunpeng Wang ◽  
Xiaoli Wang ◽  
Jingfeng Zhu ◽  
Huan Wei ◽  
Zhipeng Ding ◽  
...  

2019 ◽  
Vol 8 (7) ◽  
Author(s):  
Xing Ma ◽  
Nicole T. Perna ◽  
Jeremy D. Glasner ◽  
Jianjun Hao ◽  
Steven Johnson ◽  
...  

In 2014, an outbreak of potato blackleg and soft rot disease emerged in North America and continues to impact potato production. Here, we report the annotated genome sequence of Dickeya dianthicola ME23, a strain hypothesized to be representative of the bacterial population responsible for this disease outbreak.


Sign in / Sign up

Export Citation Format

Share Document