scholarly journals The clear and dark sides of water: influence on the coiled coil folding domain

2016 ◽  
Vol 7 (3) ◽  
pp. 189-195 ◽  
Author(s):  
Tamás Vajda ◽  
András Perczel

AbstractThe essential role of water in extra- and intracellular coiled coil structures of proteins is critically evaluated, and the different protein types incorporating coiled coil units are overviewed. The following subjects are discussed: i) influence of water on the formation and degradation of the coiled coil domain together with the stability of this conformer type; ii) the water’s paradox iii) design of coiled coil motifs and iv) expert opinion and outlook is presented. The clear and dark sides refer to the positive and negative aspects of the water molecule, as it may enhance or inhibit a given folding event. This duplicity can be symbolized by the Roman ‘Janus-face’ which means that water may facilitate and stimulate coiled coil structure formation, however, it may contribute to the fatal processes of oligomerization and amyloidosis of the very same polypeptide chain.

2022 ◽  
Author(s):  
Ruidan Zhang ◽  
Wei Li ◽  
Li Yuan ◽  
Fei Gao ◽  
Bingbing Wu ◽  
...  

Sperm flagellum is essential for male fertility, defects in flagellum biogenesis are associated with male infertility. Deficiency of CCDC42 is associated with malformation of the mouse sperm flagella. Here, we find that the testis-specific expressed protein CCDC38 (coiled coil domain containing 38) interacts with CCDC42 and localizes on manchette and sperm tail during spermiogenesis. Inactivation of CCDC38 in male mice results in distorted manchette, multiple morphological abnormalities of the flagella (MMAF) of spermatozoa, and eventually male sterility. Furthermore, we find that CCDC38 interacts with intra-flagellar transport protein 88 (IFT88) as well as the outer dense fibrous 2 (ODF2), and its depletion reduces the transportation of ODF2 to flagellum. Altogether, our results uncover the essential role of CCDC38 during sperm flagellum biogenesis, and suggesting the defects of these genes might be associated with male infertility in human being.


2017 ◽  
Vol 114 (42) ◽  
pp. 11133-11138 ◽  
Author(s):  
Olga Jasnovidova ◽  
Tomas Klumpler ◽  
Karel Kubicek ◽  
Sergei Kalynych ◽  
Pavel Plevka ◽  
...  

RNA polymerase II contains a long C-terminal domain (CTD) that regulates interactions at the site of transcription. The CTD architecture remains poorly understood due to its low sequence complexity, dynamic phosphorylation patterns, and structural variability. We used integrative structural biology to visualize the architecture of the CTD in complex with Rtt103, a 3′-end RNA-processing and transcription termination factor. Rtt103 forms homodimers via its long coiled-coil domain and associates densely on the repetitive sequence of the phosphorylated CTD via its N-terminal CTD-interacting domain. The CTD–Rtt103 association opens the compact random coil structure of the CTD, leading to a beads-on-a-string topology in which the long rod-shaped Rtt103 dimers define the topological and mobility restraints of the entire assembly. These findings underpin the importance of the structural plasticity of the CTD, which is templated by a particular set of CTD-binding proteins.


Oncogene ◽  
1998 ◽  
Vol 16 (6) ◽  
pp. 809-816 ◽  
Author(s):  
Angela Greco ◽  
Lisa Fusetti ◽  
Claudia Miranda ◽  
Riccardo Villa ◽  
Simona Zanotti ◽  
...  

1978 ◽  
Vol 173 (2) ◽  
pp. 365-371 ◽  
Author(s):  
W G Crewther ◽  
A S Inglis ◽  
N M McKern

1. The helical fragments obtained by partial chymotryptic digestion of S-carboxymethylkeratine-A, the low-sulphur fraction from wool, were fractionated into type-I and type-II helical segments in aqueous urea under conditions limiting carbamoylation. 2. The amino acid sequence of a 109-residue type-II segment was completed by using the sequenator. 3. When the data were incorporated into a helical model of 3.6 residues per turn the hydrophobic residues generated a band aligned at a slight angle to the helical axis. This result is in accord with the postulated coiled-coil structure of the crystalline regions of alpha-keratin.


2021 ◽  
Author(s):  
Meng Ke ◽  
Yue Yu ◽  
Changjian Zhao ◽  
Shirong Lai ◽  
Qiang Su ◽  
...  

TMEM120A (Transmembrane protein 120A) was recently identified as a mechanical pain sensing ion channel named as TACAN, while its homologue TMEM120B has no mechanosensing property1. Here, we report the cryo-EM structures of both human TMEM120A and TMEM120B. The two structures share the same dimeric assembly, mediated by extensive interactions through the transmembrane domain (TMD) and the N-terminal coiled coil domain (CCD). However, the nearly identical structures cannot provide clues for the difference in mechanosensing between TMEM120A and TMEM120B. Although TMEM120A could mediate conducting currents in a bilayer system, it does not mediate mechanical-induced currents in a heterologous expression system, suggesting TMEM120A is unlikely a mechanosensing channel. Instead, the TMDs of TMEM120A and TMEM120B resemble the structure of a fatty acid elongase, ELOVL7, indicating their potential role of an enzyme in lipid metabolism.


Oncogene ◽  
2003 ◽  
Vol 22 (6) ◽  
pp. 807-818 ◽  
Author(s):  
Emanuela Roccato ◽  
Sonia Pagliardini ◽  
Loredana Cleris ◽  
Silvana Canevari ◽  
Franca Formelli ◽  
...  

2005 ◽  
Vol 16 (12) ◽  
pp. 5551-5562 ◽  
Author(s):  
Eisuke Itakura ◽  
Isao Sawada ◽  
Akira Matsuura

ATR (ATM and Rad3-related), a PI kinase-related kinase (PIKK), has been implicated in the DNA structure checkpoint in mammalian cells. ATR associates with its partner protein ATRIP to form a functional complex in the nucleus. In this study, we investigated the role of the ATRIP coiled-coil domain in ATR-mediated processes. The coiled-coil domain of human ATRIP contributes to self-dimerization in vivo, which is important for the stable translocation of the ATR-ATRIP complex to nuclear foci that are formed after exposure to genotoxic stress. The expression of dimerization-defective ATRIP diminishes the maintenance of replication forks during treatment with replication inhibitors. By contrast, it does not compromise the G2/M checkpoint after IR-induced DNA damage. These results show that there are two critical functions of ATR-ATRIP after the exposure to genotoxic stress: maintenance of the integrity of replication machinery and execution of cell cycle arrest, which are separable and are achieved via distinct mechanisms. The former function may involve the concentrated localization of ATR to damaged sites for which the ATRIP coiled-coil motif is critical.


2020 ◽  
Author(s):  
Tulsi Upadhyay ◽  
Vaibhav V Karekar ◽  
Ishu Saraogi

AbstractIn bacteria, the co-chaperone GrpE acts as a nucleotide exchange factor and plays an important role in controlling the chaperone cycle of DnaK. The functional form of GrpE is an asymmetric dimer, consisting of a long non-ideal coiled-coil. During heat stress, this region partially unfolds and prevents DnaK nucleotide exchange, ultimately ceasing the chaperone cycle. In this study, we elucidate the role of thermal unfolding of the coiled-coil domain of E. coli GrpE in regulating its co-chaperonic activity. The presence of a stutter disrupts the regular heptad arrangement typically found in an ideal coiled coil resulting in structural distortion. Introduction of hydrophobic residues at the stutter altered the structural stability of the coiled-coil. Using an in vitro FRET assay, we show for the first time that the enhanced stability of GrpE resulted in an increased affinity for DnaK. However, the mutants were defective in in vitro functional assays, and were unable to support bacterial growth at heat shock temperature in a grpE-deleted E. coli strain. This work provides valuable insights into the functional role of a stutter in the GrpE coiled-coil, and its role in regulating the DnaK-chaperone cycle for bacterial survival during heat stress. More generally, our findings illustrate how a sequence specific stutter in a coiled-coil domain regulates the structure function trade-off in proteins.


Sign in / Sign up

Export Citation Format

Share Document