scholarly journals MAPKs in development: insights from Dictyostelium signaling pathways

2011 ◽  
Vol 2 (1-2) ◽  
pp. 39-46 ◽  
Author(s):  
Jeffrey A. Hadwiger ◽  
Hoai-Nghia Nguyen

AbstractMitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating that MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G-protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development.

2009 ◽  
Vol 20 (10) ◽  
pp. 2582-2592 ◽  
Author(s):  
Teresa I. Shakespeare ◽  
Caterina Sellitto ◽  
Leping Li ◽  
Clio Rubinos ◽  
Xiaohua Gong ◽  
...  

Both connexins and signal transduction pathways have been independently shown to play critical roles in lens homeostasis, but little is known about potential cooperation between these two intercellular communication systems. To investigate whether growth factor signaling and gap junctional communication interact during the development of lens homeostasis, we examined the effect of mitogen-activated protein kinase (MAPK) signaling on coupling mediated by specific lens connexins by using a combination of in vitro and in vivo assays. Activation of MAPK signaling pathways significantly increased coupling provided by Cx50, but not Cx46, in paired Xenopus laevis oocytes in vitro, as well as between freshly isolated lens cells in vivo. Constitutively active MAPK signaling caused macrophthalmia, cataract, glucose accumulation, vacuole formation in differentiating fibers, and lens rupture in vivo. The specific removal or replacement of Cx50, but not Cx46, ameliorated all five pathological conditions in transgenic mice. These results indicate that MAPK signaling specifically modulates coupling mediated by Cx50 and that gap junctional communication and signal transduction pathways may interact in osmotic regulation during postnatal fiber development.


2018 ◽  
Vol 64 (12) ◽  
pp. 937-944 ◽  
Author(s):  
Zhimin Duan ◽  
Qing Chen ◽  
Rong Zeng ◽  
Leilei Du ◽  
Caixia Liu ◽  
...  

The prevalence of Candida infection induced by non-albicans Candida (NAC) species is increasing. However, as a common NAC species, C. tropicalis has received much less study in terms of host immunity than C. albicans has. In this study, we evaluated the pro-inflammatory cytokine responses evoked by C. tropicalis and determined whether dectin-1 and downstream NF-κB and mitogen-activated protein kinases (MAPKs) signaling pathways played roles in inflammation in human peripheral blood mononuclear cells (PBMCs) and THP-1 macrophage-like cells. Exposure of PBMCs and THP-1 macrophage-like cells to C. tropicalis led to the enhanced gene expression and secretion of TNF-α and IL-6 in a time- and dose-dependent manner. THP-1 macrophage-like cells being challenged by C. tropicalis resulted in the activation of the NF-κB, p38, and ERK1/2 MAPK signaling pathways. We also found that the expression of dectin-1 was increased with C. tropicalis treatment. These data reveal that dectin-1 may play a role in sensing the inflammation response induced by C. tropicalis and that NF-κB and MAPK are involved in the downstream signaling pathways in macrophages.


2020 ◽  
Author(s):  
Sarmina Dangol ◽  
Raksha Singh ◽  
Khoa Nam Nguyen ◽  
Yafei Chen ◽  
Juan Wang ◽  
...  

ABSTRACTMitogen-activated protein kinase (MAPK) signaling is required for plant cell death responses to invading microbial pathogens. Ferric ions and reactive oxygen species (ROS) accumulate in rice (Oryza sativa) tissues undergoing cell death during Magnaporthe oryzae infection. Here, we report that rice MAP kinase (OsMEK2 and OsMPK1) signaling cascades are involved in iron- and ROS-dependent ferroptotic cell death responses of rice to M. oryzae infection. OsMEK2 interacted with OsMPK1 in the cytoplasm, and OsMPK1 moved from the cytoplasm into the nucleus to bind to the OsWRKY90 transcription factor. OsMEK2 expression may trigger OsMPK1-OsWRKY90 signaling pathways in the nucleus. Avirulent M. oryzae infection in ΔOsmek2 mutant rice did not trigger iron and ROS accumulation and lipid peroxidation, and also downregulated OsMPK1, OsWRKY90, OsRbohB, and OsPR-1b expression. However, OsMEK2 overexpression induced ROS-and iron-dependent cell death in rice during M. oryzae infection. The downstream MAP kinase (OsMPK1) overexpression induced ROS- and iron-dependent ferroptotic cell death in the compatible rice-M. oryzae interaction. These data suggest that the OsMEK2-OsMPK1-OsWRKY90 signaling cascade is involved in the ferroptotic cell death in rice. The small-molecule inducer erastin triggered iron- and lipid ROS-dependent, but OsMEK2-independent, ferroptotic cell death in ΔOsmek2 mutant plants during M. oryzae infection. Disease-related cell death was lipid ROS-dependent and iron-independent in the ΔOsmek2 mutant plants. These combined results suggest that OsMEK2 and OsMPK1 expression positively regulates iron- and ROS-dependent ferroptotic cell death via OsMEK2-OsMPK1-OsWRKY90 signaling pathways, and blast disease (susceptibility)-related cell death was ROS-dependent but iron-independent in rice-M. oryzae interactions.


2019 ◽  
Vol 30 (6) ◽  
pp. 794-807
Author(s):  
Nusrat Sharmeen ◽  
Traian Sulea ◽  
Malcolm Whiteway ◽  
Cunle Wu

Discriminating among diverse environmental stimuli is critical for organisms to ensure their proper development, homeostasis, and survival. Saccharomyces cerevisiae regulates mating, osmoregulation, and filamentous growth using three different MAPK signaling pathways that share common components and therefore must ensure specificity. The adaptor protein Ste50 activates Ste11p, the MAP3K of all three modules. Its Ras association (RA) domain acts in both hyperosmolar and filamentous growth pathways, but its connection to the mating pathway is unknown. Genetically probing the domain, we found mutants that specifically disrupted mating or HOG-signaling pathways or both. Structurally these residues clustered on the RA domain, forming distinct surfaces with a propensity for protein–protein interactions. GFP fusions of wild-type (WT) and mutant Ste50p show that WT is localized to the shmoo structure and accumulates at the growing shmoo tip. The specifically pheromone response–defective mutants are severely impaired in shmoo formation and fail to localize ste50p, suggesting a failure of association and function of Ste50 mutants in the pheromone-signaling complex. Our results suggest that yeast cells can use differential protein interactions with the Ste50p RA domain to provide specificity of signaling during MAPK pathway activation.


2020 ◽  
Vol 21 (7) ◽  
pp. 2346 ◽  
Author(s):  
Jicheng Yue ◽  
José M. López

MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.


2020 ◽  
Vol 21 (14) ◽  
pp. 4898
Author(s):  
Ruxue Huo ◽  
Zhenning Liu ◽  
Xiaolin Yu ◽  
Zongyun Li

Two-component systems (TCS) in plants have evolved into a more complicated multi-step phosphorelay (MSP) pathway, which employs histidine kinases (HKs), histidine-containing phosphotransfer proteins (HPts), and response regulators (RRs) to regulate various aspects of plant growth and development. How plants perceive the external signals, then integrate and transduce the secondary signals specifically to the desired destination, is a fundamental characteristic of the MSP signaling network. The TCS elements involved in the MSP pathway and molecular mechanisms of signal transduction have been best understood in the model plant Arabidopsis thaliana. In this review, we focus on updated knowledge on TCS signal transduction in Arabidopsis. We first present a brief description of the TCS elements; then, the protein–protein interaction network is established. Finally, we discuss the possible molecular mechanisms involved in the specificity of the MSP signaling at the mRNA and protein levels.


2000 ◽  
Vol 20 (17) ◽  
pp. 6426-6434 ◽  
Author(s):  
Lori A. Neely ◽  
Charles S. Hoffman

ABSTRACT A significant challenge to our understanding of eukaryotic transcriptional regulation is to determine how multiple signal transduction pathways converge on a single promoter to regulate transcription in divergent fashions. To study this, we have investigated the transcriptional regulation of theSchizosaccharomyces pombe fbp1 gene that is repressed by a cyclic AMP (cAMP)-dependent protein kinase A (PKA) pathway and is activated by a stress-activated mitogen-activated protein kinase (MAPK) pathway. In this study, we identified and characterized twocis-acting elements in the fbp1 promoter required for activation of fbp1 transcription. Upstream activation site 1 (UAS1), located approximately 900 bp from the transcriptional start site, resembles a cAMP response element (CRE) that is the binding site for the atf1-pcr1 heterodimeric transcriptional activator. Binding of this activator to UAS1 is positively regulated by the MAPK pathway and negatively regulated by PKA. UAS2, located approximately 250 bp from the transcriptional start site, resembles a Saccharomyces cerevisiae stress response element. UAS2 is bound by transcriptional activators and repressors regulated by both the PKA and MAPK pathways, although atf1 itself is not present in these complexes. Transcriptional regulation offbp1 promoter constructs containing only UAS1 or UAS2 confirms that the PKA and MAPK regulation is targeted to both sites. We conclude that the PKA and MAPK signal transduction pathways regulatefbp1 transcription at UAS1 and UAS2, but that the antagonistic interactions between these pathways involve different mechanisms at each site.


Cardiology ◽  
2019 ◽  
Vol 145 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Qunying Xi ◽  
Zhihong Liu ◽  
Yunhu  Song ◽  
Huili Gan ◽  
Zhiwei Huang ◽  
...  

Background: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is largely unknown. Proteomics offers an approach to overview the molecular activities and signal transduction pathways involved in specific disease processes. Objectives: In this study, the expression of proteins in endarterectomized tissues from patients with CTEPH was investigated in a novel strategy to explore the pathophysiology of this disease. Methods: We used the iTRAQ (isobaric tag for relative and absolute quantitation) approach combined with a Thermo Scientific Q Exactive MS analysis to compare the protein profiles in endarterectomized tissues from CTEPH patients and that of the control samples (mixture of cultured human pulmonary artery endothelial cells, human pulmonary artery smooth muscle cells, and human pulmonary fibroblasts). GO and KEGG analyses were performed to understand the functional classification and molecular activities of all the tissue-specific proteins, and the involved signal transduction pathways. Results: Six hundred and seventy-nine tissue-specific proteins were detected. Bioinformatic analysis showed that the major biological processes involving these proteins were: response to wounding, defense response, acute inflammatory response, immune response, complement activation, and blood coagulation. The main pathways involved were: complement and coagulation cascade, systemic lupus erythematosus, extracellular matrix-receptor interaction, cell adhesion molecules, FcεRI signaling, and leukocyte transendothelial migration. Conclusions: The present study revealed that immune and defense response might play an important role in CTEPH.


Sign in / Sign up

Export Citation Format

Share Document