scholarly journals Laboratory sample stability. Is it possible to define a consensus stability function? An example of five blood magnitudes

2018 ◽  
Vol 56 (11) ◽  
pp. 1806-1818 ◽  
Author(s):  
Rubén Gómez Rioja ◽  
Débora Martínez Espartosa ◽  
Marta Segovia ◽  
Mercedes Ibarz ◽  
María Antonia Llopis ◽  
...  

Abstract Background: The stability limit of an analyte in a biological sample can be defined as the time required until a measured property acquires a bias higher than a defined specification. Many studies assessing stability and presenting recommendations of stability limits are available, but differences among them are frequent. The aim of this study was to classify and to grade a set of bibliographic studies on the stability of five common blood measurands and subsequently generate a consensus stability function. Methods: First, a bibliographic search was made for stability studies for five analytes in blood: alanine aminotransferase (ALT), glucose, phosphorus, potassium and prostate specific antigen (PSA). The quality of every study was evaluated using an in-house grading tool. Second, the different conditions of stability were uniformly defined and the percent deviation (PD%) over time for each analyte and condition were scattered while unifying studies with similar conditions. Results: From the 37 articles considered as valid, up to 130 experiments were evaluated and 629 PD% data were included (106 for ALT, 180 for glucose, 113 for phosphorus, 145 for potassium and 85 for PSA). Consensus stability equations were established for glucose, potassium, phosphorus and PSA, but not for ALT. Conclusions: Time is the main variable affecting stability in medical laboratory samples. Bibliographic studies differ in recommedations of stability limits mainly because of different specifications for maximum allowable error. Definition of a consensus stability function in specific conditions can help laboratories define stability limits using their own quality specifications.

Author(s):  
E. Budak ◽  
L. T. Tunc

Although process damping has a strong effect on cutting dynamics and stability, it has been mostly ignored in chatter analysis as there is no practical model for estimation of the damping coefficient and very limited data are available. This is mainly because of the fact that complicated test setups were used in order to measure the damping force in the past. In this study, a practical identification and modeling method for the process damping is presented. In this approach, the process damping is identified directly from the chatter tests using experimental and analytical stability limits. Once the process damping coefficient is identified, it is related to the instantaneous indentation volume by a coefficient which can be used for different cutting conditions and tool geometries. In determining the indentation coefficient, chatter test results, energy, and tool indentation geometry analyses are used. The determined coefficients are then used for the stability limit and process damping prediction in different cases, and verified using time-domain simulations and experimental results. The presented method can be used to determine chatter-free cutting depths under the influence of process damping for increased productivity.


SPE Journal ◽  
2011 ◽  
Vol 16 (02) ◽  
pp. 249-262 ◽  
Author(s):  
J.. Kim ◽  
H.A.. A. Tchelepi ◽  
R.. Juanes

Summary We perform detailed stability and convergence analyses of sequential-implicit solution methods for coupled fluid flow and reservoir geomechanics. We analyze four different sequential-implicit solution strategies, where each subproblem (flow and mechanics) is solved implicitly: two schemes in which the mechanical problem is solved first—namely, the drained and undrained splits—and two schemes in which the flow problem is solved first—namely, the fixed-strain and fixed-stress splits. The von Neumann method is used to obtain the linear-stability criteria of the four sequential schemes, and numerical simulations are used to test the validity and sharpness of these criteria for representative problems. The analysis indicates that the drained and fixed-strain splits, which are commonly used, are conditionally stable and that the stability limits depend only on the strength of coupling between flow and mechanics and are independent of the timestep size. Therefore, the drained and fixed-strain schemes cannot be used when the coupling between flow and mechanics is strong. Moreover, numerical solutions obtained using the drained and fixed-strain sequential schemes suffer from oscillations, even when the stability limit is honored. For problems where the deformation may be plastic (nonlinear) in nature, the drained and fixed-strain sequential schemes become unstable when the system enters the plastic regime. On the other hand, the undrained and fixed-stress sequential schemes are unconditionally stable regardless of the coupling strength, and they do not suffer from oscillations. While both the undrained and fixed-stress schemes are unconditionally stable, for the cases investigated we found that the fixed-stress split converges more rapidly than the undrained split. On the basis of these findings, we strongly recommend the fixed-stress sequential-implicit method for modeling coupled flow and geomechanics in reservoirs.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Jonathan N. Gomes ◽  
James D. Kribs ◽  
Kevin M. Lyons

The stability limits of a jet flame can play an important role in the design of burners and combustors. This study details an experiment conducted to determine the liftoff and blowout velocities of oblique-angle methane jet flames under various air coflow velocities. A nozzle was mounted on a telescoping boom to allow for an adjustable burner angle relative to a vertical coflow. Twenty-four flow configurations were established using six burner nozzle angles and four coflow velocities. Measurements of the fuel supply velocity during liftoff and blowout were compared against two parameters: nozzle angle and coflow velocity. The resulting correlations indicated that flames at more oblique angles have a greater upper stability limit and were more resistant to changes in coflow velocity. This behavior occurs due to a lower effective coflow velocity at angles more oblique to the coflow direction. Additionally, stability limits were determined for flames in crossflow and mild counterflow configurations, and a relationship between the liftoff and blowout velocities was observed. For flames in crossflow and counterflow, the stability limits are higher. Further studies may include more angle and coflow combinations, as well as the effect of diluents or different fuel types.


Single, highly charged droplets of dioctylphthalate and sulphuric acid of radius between 1 and 10 μm are suspended in vacuum in a quadrupol trap. As the droplets evaporate their radius is monitored continuously by light scattering and their charge is determined periodically by weight balancing. The droplets break when the electric stress exceeds that of surface tension. The largest fragment remains trapped allowing a determination of the change in volume and charge. The fraction of volume and charge lost is found to be independent of particle size and sign of charge and is variable. The oil drops lose (15.0 ± 3.9)% of their charge on breakup and (2.25 ± 0.96)% of their mass. The acid droplets lose (49.4 ± 8.3)% of their charge and less than 0.1% of their mass. The acid results are compared with those from a model of field emission based upon prolate spheroid deformation and the formation of Taylor cones. For both oil and acid droplets the stability limits are in agreement with those predicted by Lord Rayleigh.


Author(s):  
Daniel Franke ◽  
Daniel Möller ◽  
Maximilian Jüngst ◽  
Heinz-Peter Schiffer ◽  
Thomas Giersch ◽  
...  

This study investigates the aerodynamic and aeroelastic characteristics of a transonic axial compressor, focusing on blade count reduced rotor behavior. The analysis is based on experiments, conducted at the Transonic Compressor Darmstadt test rig at Technical University of Darmstadt and compulsory simulations. In order to obtain measurement data for the detailed aerodynamic and aeroelastic investigation, extensive steady and unsteady instrumentation was applied. Besides transient measurements at the stability limit to determine the operating range and limiting phenomena, performance measurements were performed, presenting promising results with respect to the capabilities of blade count reduced rotors. Close to the stability limit, aerodynamic disturbances like radial vortices were detected for both rotors, varying in size, count, speed and trajectory. Comparing the rotor configurations results in different stability limits along the compressor map as well as varying aeromechanical behavior. Those effects can partially be traced to the variation in blade pitch and associated aerodynamics.


2005 ◽  
Vol 5 (1) ◽  
pp. 3-50 ◽  
Author(s):  
Alexei A. Gulin

AbstractA review of the stability theory of symmetrizable time-dependent difference schemes is represented. The notion of the operator-difference scheme is introduced and general ideas about stability in the sense of the initial data and in the sense of the right hand side are formulated. Further, the so-called symmetrizable difference schemes are considered in detail for which we manage to formulate the unimprovable necessary and su±cient conditions of stability in the sense of the initial data. The schemes with variable weight multipliers are a typical representative of symmetrizable difference schemes. For such schemes a numerical algorithm is proposed and realized for constructing stability boundaries.


1998 ◽  
Vol 1 (1) ◽  
pp. 23-39
Author(s):  
Carter J. Kerk ◽  
Don B. Chaffin ◽  
W. Monroe Keyserling

The stability constraints of a two-dimensional static human force exertion capability model (2DHFEC) were evaluated with subjects of varying anthropometry and strength capabilities performing manual exertions. The biomechanical model comprehensively estimated human force exertion capability under sagittally symmetric static conditions using constraints from three classes: stability, joint muscle strength, and coefficient of friction. Experimental results showed the concept of stability must be considered with joint muscle strength capability and coefficient of friction in predicting hand force exertion capability. Information was gained concerning foot modeling parameters as they affect whole-body stability. Findings indicated that stability limits should be placed approximately 37 % the ankle joint center to the posterior-most point of the foot and 130 % the distance from the ankle joint center to the maximal medial protuberance (the ball of the foot). 2DHFEC provided improvements over existing models, especially where horizontal push/pull forces create balance concerns.


1999 ◽  
Vol 09 (12) ◽  
pp. 2315-2320 ◽  
Author(s):  
LOUIS M. PECORA ◽  
THOMAS L. CARROLL

We show that many coupled oscillator array configurations considered in the literature can be put into a simple form so that determining the stability of the synchronous state can be done by a master stability function which solves, once and for all, the problem of synchronous stability for many couplings of that oscillator.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2452
Author(s):  
Chia-Jung Hsieh ◽  
Ju-Chuan Cheng ◽  
Chia-Jung Hu ◽  
Chi-Yang Yu

Capturing and storing CO2 is of prime importance. The rate of CO2 sequestration is often limited by the hydration of CO2, which can be greatly accelerated by using carbonic anhydrase (CA, EC 4.2.1.1) as a catalyst. In order to improve the stability and reusability of CA, a silica-condensing peptide (R5) was fused with the fastest known CA from Sulfurihydrogenibium azorense (SazCA) to form R5-SazCA; the fusion protein successfully performed in vitro silicification. The entrapment efficiency reached 100% and the silicified form (R5-SazCA-SP) showed a high activity recovery of 91%. The residual activity of R5-SazCA-SP was two-fold higher than that of the free form when stored at 25 °C for 35 days; R5-SazCA-SP still retained 86% of its activity after 10 cycles of reuse. Comparing with an uncatalyzed reaction, the time required for the onset of CaCO3 formation was shortened by 43% and 33% with the addition of R5-SazCA and R5-SazCA-SP, respectively. R5-SazCA-SP shows great potential as a robust and efficient biocatalyst for CO2 sequestration because of its high activity, high stability, and reusability.


2021 ◽  
Vol 11 (4) ◽  
pp. 1618
Author(s):  
Ping-Nan Chen ◽  
Yung-Te Chen ◽  
Hsin Hsiu ◽  
Ruei-Jia Chen

This paper proposes a passivity theorem on the basis of energy concepts to study the stability of force feedback in a virtual haptic system. An impedance-passivity controller (IPC) was designed from the two-port network perspective to improve the chief drawback of haptic systems, namely the considerable time required to reach stability if the equipment consumes energy slowly. The proposed IPC can be used to achieve stability through model parameter selection and to obtain control gain. In particular, haptic performance can be improved for extreme cases of high stiffness and negative damping. Furthermore, a virtual training system for one-degree-of-freedom sticking was developed to validate the experimental platform of our IPC. To ensure consistency in the experiment, we designed a specialized mechanical robot to replace human operation. Finally, compared with basic passivity control systems, our IPC could achieve stable control rapidly.


Sign in / Sign up

Export Citation Format

Share Document