scholarly journals Experimental computer tomograph

2015 ◽  
Vol 1 (1) ◽  
pp. 290-293
Author(s):  
D. Heinemann ◽  
A. Keller ◽  
D. Jannek

AbstractThe computed tomography is one of the most important medical instruments, allowing the non-invasive visualization of cross sections which are free from superpositions. Since 2000 an experimental computer tomo-graph of the third generation for the purpose of education and research was set up and further developed. Besides the mechanical construction design reconstruction algorithms, including certain corrections of the measured data were developed and implemented. In 2013 iterative reconstruction methods were investigated and implemented for advanced reconstructions and dose reduction using various ray tracing algorithms. The new reconstruction technique leads to improvements in image quality and low dose reconstructions.

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hsuan-Ming Huang ◽  
Ing-Tsung Hsiao

Background and Objective. Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques.Methods. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively.Results. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method.Conclusions. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.


2020 ◽  
Vol 10 (3) ◽  
pp. 620-627 ◽  
Author(s):  
Dayu Xiao ◽  
Xiaotong Zhang ◽  
Jianhua Li ◽  
Nan Bao ◽  
Yan Kang

Computed tomography (CT) scans produce ionizing radiation in the body, and high-dose CT scans may increase the risk of cancer. Therefore, reducing the CT radiation dose is particularly important in clinical diagnosis, which is achieved mainly by reducing projection views and tube current. However, the projection data are incomplete in the case of sparse views, which may cause stripe artifacts in the image reconstructed by the filtered back projection (FBP) algorithm, thereby losing the details of the image. Low current intensity also increases the noise of the projection data, degrading the quality of the reconstructed image. This study aimed to use the alternating direction method of multipliers (ADMM) to address the shearlet-based sparse regularization problem, which is subsequently referred to as ADMM-shearlet method. The low-dose projection data were simulated by adding Gaussian noise with zero mean to high-dose projection data. Then FBP, simultaneous algebraic reconstruction technique, total variation, and ADMM-shearlet methods were used to reconstruct images. Normalized mean square error, peak signal-to-noise ratio, and universal quality index were used to evaluate the performance of different reconstruction algorithms. Compared with the traditional reconstruction algorithms, the ADMM-shearlet algorithm performed well in suppressing the noise due to the low dose while maintaining the image details.


2021 ◽  
Vol 12 (3) ◽  
pp. 54-71
Author(s):  
G. V. Berkovich ◽  
A. V. Vodovatov ◽  
L. A. Chipiga ◽  
G. E. Trufanov

Introduction. Сomputed tomography (CT) is associated with high individual patient doses. Hence, the process of optimization in CT examinations by developing low-dose scan protocols is important.Purpose of the study. Clinical approbation of low-dose protocols developed by the authors earlier, selection of the most promising protocol, assessment of the applicability of the developed algorithm for expert assessment of the quality of CT images.Materials and methods. The study was based on the data from 96 patients who underwent cardiac surgery with suspected infection in the lungs or sternal wound infection. CT examinations were performed using standard, low-dose and ultra-low-dose protocols (effective dose 3,5±0,9, 1,7±0,1 and 0,8±0,1 mSv, respectively) using two iterative reconstruction algorithms (IMR and iDose). The quality of the obtained data was assessed by 5 radiologists with more than 5-year experience in chest radiology.Results. In terms of the number of misinterpretations, no significant differences were estimated between the standard and lowdose protocols for all reconstruction methods. The ultra-low-dose protocol was characterized by a significantly higher number of missing lesions compared to other protocols.Conclusion. The developed method of assessment of the CT image quality has proven to be informative and reproducible and can be used to assess new scanning protocols.


2020 ◽  
Vol 28 (6) ◽  
pp. 1157-1169
Author(s):  
Zhanli Hu ◽  
Zixiang Chen ◽  
Chao Zhou ◽  
Xuda Hong ◽  
Jianwei Chen ◽  
...  

Breast cancer is the most frequently diagnosed cancer in women worldwide. Digital breast tomosynthesis (DBT), which is based on limited-angle tomography, was developed to solve tissue overlapping problems associated with traditional breast mammography. However, due to the problems associated with tube movement during the process of data acquisition, stationary DBT (s-DBT) was developed to allow the X-ray source array to stay stationary during the DBT scanning process. In this work, we evaluate four widely used and investigated DBT image reconstruction algorithms, including the commercial Feldkamp-Davis-Kress algorithm (FBP), the simultaneous iterative reconstruction technique (SIRT), the simultaneous algebraic reconstruction technique (SART) and the total variation regularized SART (SART-TV) for an s-DBT imaging system that we set up in our own laboratory for studies using a semi-elliptical digital phantom and a rubber breast phantom to determine the most superior algorithm for s-DBT image reconstruction among the four algorithms. Several quantitative indexes for image quality assessment, including the peak signal-noise ratio (PSNR), the root mean square error (RMSE) and the structural similarity (SSIM), are used to determine the best algorithm for the imaging system that we set up. Image resolutions are measured via the calculation of the contrast-to-noise ratio (CNR) and artefact spread function (ASF). The experimental results show that the SART-TV algorithm gives reconstructed images with the highest PSNR and SSIM values and the lowest RMSE values in terms of image accuracy and similarity, along with the highest CNR values calculated for the selected features and the best ASF curves in terms of image resolution in the horizontal and vertical directions. Thus, the SART-TV algorithm is proven to be the best algorithm for use in s-DBT image reconstruction for the specific imaging task in our study.


Author(s):  
D. E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
Joann Stevenson ◽  
S. Black

The response of spermatogonial cells to X-irradiation is well documented. It has been shown that there is a radiation resistent stem cell (As) which, after irradiation, replenishes the seminiferous epithelium. Most investigations in this area have dealt with radiation dosages of 100R or more. This study was undertaken to observe cellular responses at doses less than 100R of X-irradiation utilizing a system in which the tissue can be used for light and electron microscopy.Brown B6D2F1 mice aged 16 weeks were exposed to X-irradiation (225KeV; 15mA; filter 0.35 Cu; 50-60 R/min). Four mice were irradiated at each dose level between 1 and 100 rads. Testes were removed 3 days post-irradiation, fixed, and embedded. Sections were cut at 2 microns for light microscopy. After staining, surviving spermatogonia were identified and counted in tubule cross sections. The surviving fraction of spermatogonia compared to control, S/S0, was plotted against dose to give the curve shown in Fig. 1.


Author(s):  
Kent McDonald ◽  
David Mastronarde ◽  
Rubai Ding ◽  
Eileen O'Toole ◽  
J. Richard McIntosh

Mammalian spindles are generally large and may contain over a thousand microtubules (MTs). For this reason they are difficult to reconstruct in three dimensions and many researchers have chosen to study the smaller and simpler spindles of lower eukaryotes. Nevertheless, the mammalian spindle is used for many experimental studies and it would be useful to know its detailed structure.We have been using serial cross sections and computer reconstruction methods to analyze MT distributions in mitotic spindles of PtK cells, a mammalian tissue culture line. Images from EM negatives are digtized on a light box by a Dage MTI video camera containing a black and white Saticon tube. The signal is digitized by a Parallax 1280 graphics device in a MicroVax III computer. Microtubules are digitized at a magnification such that each is 10-12 pixels in diameter.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Andrea DeCensi ◽  
Harriet Johansson ◽  
Thomas Helland ◽  
Matteo Puntoni ◽  
Debora Macis ◽  
...  

AbstractLow-dose tamoxifen halves recurrence in non-invasive breast cancer without significant adverse events. Some adjuvant trials with tamoxifen 20 mg/day had shown an association between low endoxifen levels (9–16 nM) and recurrence, but no association with CYP2D6 was shown in the NSABP P1 and P2 prevention trials. We studied the association of CYP2D6 genotype and tamoxifen metabolites with tumor biomarkers and recurrence in a randomized phase III trial of low-dose tamoxifen. Median (IQR) endoxifen levels at year 1 were 8.4 (5.3–11.4) in patients who recurred vs 7.5 (5.1–10.2) in those who did not recur (p = 0.60). Tamoxifen and metabolites significantly decreased C-reactive protein (CRP, p < 0.05), and a CRP increase after 3 years was associated with higher risk of recurrence (HR = 4.37, 95% CI, 1.14–16.73, P = 0.03). In conclusion, endoxifen is below 9 nM in most subjects treated with 5 mg/day despite strong efficacy and there is no association with recurrence, suggesting that the reason for tamoxifen failure is not poor drug metabolism. Trial registration: ClinicalTrials.gov, Identifier: NCT01357772.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1209
Author(s):  
Gabriel Keller ◽  
Simon Götz ◽  
Mareen Sarah Kraus ◽  
Leonard Grünwald ◽  
Fabian Springer ◽  
...  

This study analyzed the radiation exposure of a new ultra-low dose (ULD) protocol compared to a high-quality (HQ) protocol for CT-torsion measurement of the lower limb. The analyzed patients (n = 60) were examined in the period March to October 2019. In total, 30 consecutive patients were examined with the HQ and 30 consecutive patients with the new ULD protocol comprising automatic tube voltage selection, automatic exposure control, and iterative image reconstruction algorithms. Radiation dose parameters as well as the contrast-to-noise ratio (CNR) and diagnostic confidence (DC; rated by two radiologists) were analyzed and potential predictor variables, such as body mass index and body volume, were assessed. The new ULD protocol resulted in significantly lower radiation dose parameters, with a reduction of the median total dose equivalent to 0.17 mSv in the ULD protocol compared to 4.37 mSv in the HQ protocol (p < 0.001). Both groups showed no significant differences in regard to other parameters (p = 0.344–0.923). CNR was 12.2% lower using the new ULD protocol (p = 0.033). DC was rated best by both readers in every HQ CT and in every ULD CT. The new ULD protocol for CT-torsion measurement of the lower limb resulted in a 96% decrease of radiation exposure down to the level of a single pelvic radiograph while maintaining good image quality.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Klara Retko ◽  
Maša Kavčič ◽  
Lea Legan ◽  
Polonca Ropret ◽  
Bojana Rogelj Škafar ◽  
...  

AbstractIn this study, a painted beehive panel from the collection of the Slovene Ethnographic Museum was examined with respect to its material composition with the aim to reveal the painting technique. Due to the state of degradation due to outdoor weathering (UV irradiation, rainfall, extreme temperature and humidity fluctuations), as well as past conservation interventions, the object represented a complex analytical challenge. We aimed for non-invasive techniques (FTIR in reflection mode, Raman spectroscopy and hyperspectral imaging in the range of 400–2500 nm); however, in order to explore paint layers, cross-sections were also analysed using Raman spectroscopy. FTIR spectroscopy in transmission mode and gas chromatography coupled to mass spectrometry were also used on sample fragments. Various original materials were identified such as pigments and binders. The surface coating applied during conservation interventions was also characterised. Additionally, organic compounds were found (oxalate, carboxylate), representing transformation products. The potential use of Prussian blue as a background paint layer is discussed.


Sign in / Sign up

Export Citation Format

Share Document