scholarly journals Characterization of online high dynamic range imaging for laser-driven ion beam diagnostics using visible light

2017 ◽  
Vol 3 (2) ◽  
pp. 343-346
Author(s):  
Franz Englbrecht ◽  
Felix Balling ◽  
Thomas Federico Rösch ◽  
Matthias Würl ◽  
Florian Hans Lindner ◽  
...  

AbstractLaser-driven acceleration of particle beams is an emerging modality under research for biomedical applications. The spatially resolved diagnostics of laser-accelerated proton bunches is crucial for their application. The RadEye detector, featuring up to 10 cm x 5 cm area of online complementary metal-oxide-semiconductor (CMOS) detector made of 48 μm pixels, is established for x-ray, proton and ion beam diagnostics. We exploit the usually undesired ‘Image lag’ phenomenon of incomplete pixel reset to generate 2D-images with a larger dynamic range than the single frame range of 12-bit. Using 532 nm laser pulses and computer simulations for single-slit diffraction, calibration factors to stack multiple readouts were successfully derived to quantitatively reconstruct spatial information about an optical beam and hence extend the dynamic range of the detector compared to a single frame. The final goal is focus quantification for a permanent magnet quadrupole system for protons and terawatt (TW-class) laser focus diagnostics.

Instruments ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 38 ◽  
Author(s):  
Majid Zarghami ◽  
Leonardo Gasparini ◽  
Matteo Perenzoni ◽  
Lucio Pancheri

This paper investigates the use of image sensors based on complementary metal–oxide–semiconductor (CMOS) single-photon avalanche diodes (SPADs) in high dynamic range (HDR) imaging by combining photon counts and timestamps. The proposed method is validated experimentally with an SPAD detector based on a per-pixel time-to-digital converter (TDC) architecture. The detector, featuring 32 × 32 pixels with 44.64-µm pitch, 19.48% fill factor, and time-resolving capability of ~295-ps, was fabricated in a 150-nm CMOS standard technology. At high photon flux densities, the pixel output is saturated when operating in photon-counting mode, thus limiting the DR of this imager. This limitation can be overcome by exploiting the distribution of photon arrival times in each pixel, which shows an exponential behavior with a decay rate dependent on the photon flux level. By fitting the histogram curve with the exponential decay function, the extracted time constant is used to estimate the photon count. This approach achieves 138.7-dB dynamic range within 30-ms of integration time, and can be further extended by using a timestamping mechanism with a higher resolution.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1683
Author(s):  
Winai Jaikla ◽  
Fabian Khateb ◽  
Tomasz Kulej ◽  
Koson Pitaksuttayaprot

This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is −49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax5851 ◽  
Author(s):  
Leeat Keren ◽  
Marc Bosse ◽  
Steve Thompson ◽  
Tyler Risom ◽  
Kausalia Vijayaragavan ◽  
...  

Understanding tissue structure and function requires tools that quantify the expression of multiple proteins while preserving spatial information. Here, we describe MIBI-TOF (multiplexed ion beam imaging by time of flight), an instrument that uses bright ion sources and orthogonal time-of-flight mass spectrometry to image metal-tagged antibodies at subcellular resolution in clinical tissue sections. We demonstrate quantitative, full periodic table coverage across a five-log dynamic range, imaging 36 labeled antibodies simultaneously with histochemical stains and endogenous elements. We image fields of view up to 800 μm × 800 μm at resolutions down to 260 nm with sensitivities approaching single-molecule detection. We leverage these properties to interrogate intrapatient heterogeneity in tumor organization in triple-negative breast cancer, revealing regional variability in tumor cell phenotypes in contrast to a structured immune response. Given its versatility and sample back-compatibility, MIBI-TOF is positioned to leverage existing annotated, archival tissue cohorts to explore emerging questions in cancer, immunology, and neurobiology.


2008 ◽  
Vol 47 (7) ◽  
pp. 5390-5395 ◽  
Author(s):  
Koichi Mizobuchi ◽  
Satoru Adachi ◽  
Jose Tejada ◽  
Hiromichi Oshikubo ◽  
Nana Akahane ◽  
...  

1987 ◽  
Vol 96 (1_suppl) ◽  
pp. 76-79
Author(s):  
J. Génin ◽  
R. Charachon

In a multichannel cochlear prosthesis, electrical interactions between electrodes impose severe limitations on dynamic range and selectivity. We present a theoretical model to cope with these limitations. Building a successful cochlear implant requires full custom-integrated circuits. We present the design of such a device, implemented in complementary metal oxide semiconductor technology. The area of the chip is 9 mm2 and it can stimulate 15 cochlear electrodes with current impulses.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5572
Author(s):  
Isao Takayanagi ◽  
Ken Miyauchi ◽  
Shunsuke Okura ◽  
Kazuya Mori ◽  
Junichi Nakamura ◽  
...  

In this paper, a prototype complementary metal-oxide-semiconductor (CMOS) image sensor with a 2.8-μm backside-illuminated (BSI) pixel with a lateral overflow integration capacitor (LOFIC) architecture is presented. The pixel was capable of a high conversion gain readout with 160 μV/e− for low light signals while a large full-well capacity of 120 ke− was obtained for high light signals. The combination of LOFIC and the BSI technology allowed for high optical performance without degradation caused by extra devices for the LOFIC structure. The sensor realized a 70% peak quantum efficiency with a normal (no anti-reflection coating) cover glass and a 91% angular response at ±20° incident light. This 2.8-μm pixel is potentially capable of higher than 100 dB dynamic range imaging in a pure single exposure operation.


Sign in / Sign up

Export Citation Format

Share Document