scholarly journals Individual Avatar Feedback Creation for Assisted Motion Control

2019 ◽  
Vol 5 (1) ◽  
pp. 617-620
Author(s):  
Lars Lehmann ◽  
Christian Wiede ◽  
Gangolf Hirtz

AbstractIn Medical Training Therapy (MTT), the precise execution of the training exercises is of decisive importance for the success of the therapy. Currently, a therapist has to treat up to 15 patients simultaneously on an outpatient basis. We propose, an assistance system, can evaluate both quantity and quality of the movement performed using a target-oriented model and give recommendations for action directly to the patient by means of feedback. An avatar in traffic light colours signals in which body region an error has occurred. The individualisation of the underlying three-dimensional avatar increases the willingness of the patients to participate in the exercises without the supervision of therapist. The monitored error frequency was decreased by 50% by the assistance system.

2021 ◽  
Vol 7 (2) ◽  
pp. 1-4
Author(s):  
Lars Lehmann ◽  
Roman Seidel ◽  
Gangolf Hirtz

Abstract In Medical Training Therapy (MTT) the exact execution of training exercises developed by the therapist is crucial for the success of the therapy. Currently, a therapist has to treat up to 15 patients at the same time on an outpatient basis. The aim of this paper is to provide an assistance system that can evaluate both the quantity and the quality of the movement performed using a goal-oriented model which gives the patient direct recommendations for action through automated, machine-monitored feedback. To implement the therapeutic measures in a targeted manner, it is advantageous to transfer their knowledge to the patients. This would be possible by transferring the therapist's movement into a patient's movement. Under this assumption a movement sequence of the therapist is recorded and a movement reference frame is extracted with the help of a smart sensor, which is made available to the patient as a target movement. The assistance system records the patient's movement in real time, extracts the its skeleton and compares this movement with the reference. Due to anatomical body differences, the reference skeleton must be adapted to the current patient skeleton, otherwise no movement evaluation can take place. By adjusting the bone lengths and angles in the individual frames of the patient's movement the selected sequence can be compared and any movement deviations that occur can be projected in directly in real time onto the patient's 3D avatar as an error image. The patient tries to reduce the errors and in doing so comes closer and closer to the ideal movement of the therapist which guarantees the best possible therapy success.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Author(s):  
Anna Eleftheriou ◽  
Aikaterini Rokou ◽  
Christos Argyriou ◽  
Nikolaos Papanas ◽  
George S. Georgiadis

The impact of coronavirus infectious disease (COVID-19) on medical education has been substantial. Medical students require considerable clinical exposure. However, due to the risk of COVID-19, the majority of medical schools globally have discontinued their normal activities. The strengths of virtual teaching now include a variety of web-based resources. New interactive forms of virtual teaching are being developed to enable students to interact with patients from their homes. Conversely, students have received decreased clinical training in certain medical and surgical specialities, which may, in turn, reduce their performance, confidence, and abilities as future physicians. We sought to analyze the effect of telemedicine on the quality of medical education in this new emerging era and highlight the benefits and drawbacks of web-based medical training in building up future physicians. The COVID-19 pandemic has posed an unparalleled challenge to medical schools, which are aiming to deliver quality education to students virtually, balancing between evidence-based and experience-based medicine.


Author(s):  
Radhika Theagarajan ◽  
Shubham Nimbkar ◽  
Jeyan Arthur Moses ◽  
Chinnaswamy Anandharamakrishnan

Author(s):  
Paweł Piwowarczyk ◽  
Agnieszka Kaczmarska ◽  
Paweł Kutnik ◽  
Aleksandra Hap ◽  
Joanna Chajec ◽  
...  

Anxiety and fear are determinants of acute and chronic pain. Effectively measuring fear associated with pain is critical for identifying individuals’ vulnerable to pain. This study aimed to assess fear of pain among students and evaluate factors associated with pain-related fear. We used the Fear of Pain Questionnaire-9 to measure this fear. We searched for factors associated with fear of pain: gender, size of the city where the subjects lived, subject of academic study, year of study, the greatest extent of experienced pain, frequency of painkiller use, presence of chronic or mental illness, and past hospitalization. We enrolled 717 participants. Median fear of minor pain was 5 (4–7) fear of medical pain 7 (5–9), fear of severe pain 10 (8–12), and overall fear of pain 22 (19–26). Fear of pain was associated with gender, frequency of painkiller use, and previously experienced pain intensity. We found a correlation between the greatest pain the participant can remember and fear of minor pain (r = 0.112), fear of medical pain (r = 0.116), and overall fear of pain (r = 0.133). Participants studying medicine had the lowest fear of minor pain while stomatology students had the lowest fear of medical pain. As students advanced in their studies, their fear of medical pain lowered. Addressing fear of pain according to sex of the patient, frequency of painkiller use, and greatest extent of experienced pain could ameliorate medical training and improve the quality of pain management in patients.


2011 ◽  
Vol 121-126 ◽  
pp. 1744-1748
Author(s):  
Xiang Yang Jin ◽  
Tie Feng Zhang ◽  
Li Li Zhao ◽  
He Teng Wang ◽  
Xiang Yi Guan

To determine the efficiency, load-bearing capacity and fatigue life of beveloid gears with intersecting axes, we design a mechanical gear test bed with closed power flow. To test the quality of its structure and predict its overall performance, we establish a three-dimensional solid model for various components based on the design parameters and adopt the technology of virtual prototyping simulation to conduct kinematics simulation on it. Then observe and verify the interactive kinematic situation of each component. Moreover, the finite element method is also utilized to carry out structural mechanics and dynamics analysis on some key components. The results indicate that the test bed can achieve the desired functionality, and the static and dynamic performance of some key components can also satisfy us.


2011 ◽  
Vol 148-149 ◽  
pp. 54-57
Author(s):  
Xiao Ping Lin ◽  
Yun Dong ◽  
Lian Wei Yang

The Al2O3 nano-films of different thicknesses (1~100nm) were successfully deposited on the monocrystalline Si surface by using ion beam sputtering deposition. The surface topography and the component of nano-films with different thickness were analyzed. The quality of the surface of nano-films was systematically studied. When the films’ thickness increase, the studies by atomic force microscope (AFM), X-ray photoelectron spectrum(XPS) show that the gathering grain continually grows up and transits from acerose cellula by two-dimensional growth to globularity by three-dimensional growth. The elements O, Al and Si were found on the surface of Al2O3 nano-films. With the thickness of the films increasing, the content of Al gradually increases and the intensity peak of Si wears off, the surface quality of the deposited films is ceaselessly improved


Sign in / Sign up

Export Citation Format

Share Document