Graphite felt modified with electroless Co–Ni–P alloy as an electrode material for electrochemical oxidation and reduction of polysulfide species

2016 ◽  
Vol 70 (12) ◽  
Author(s):  
Brigita Macijauskienė ◽  
Egidijus Griškonis

AbstractElectroless deposition of a Co–Ni–P alloy on the surface of graphite felt filaments was performed in a low-temperature pyrophosphate solution under flow-through conditions. The loading, composition, morphology, and structure of electroless the Co–Ni–P alloy deposit on the filaments of the modified graphite felt were investigated by gravimetric analysis, energy-dispersive X-ray spectroscopy, scanning electron microscopy and X-ray diffraction, respectively. Electrochemical characterization of a graphite felt electrode modified with electroless Co–Ni–P alloy was performed by cyclic voltammetry, chrono-techniques, and the electrochemical impedance spectroscopy test in an aqueous solution of polysulfide composed of the mixture of 1 M Na

BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Arefeh Dehghani Tafti ◽  
Bi Bi Fatemeh Mirjalili ◽  
Abdolhamid Bamoniri ◽  
Naeimeh Salehi

AbstractNano-eggshell/Ti(IV) as a novel naturally based catalyst was prepared, characterized and applied for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. The characterization of nano-eggshell/Ti(IV) was performed using Fourier Transform Infrared spectroscopy, X-ray Diffraction, Field Emission Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and Thermo Gravimetric Analysis. Dihydropyrano[2,3-c]pyrazoles were synthesized in the presence of nano-eggshell/Ti(IV) via a four component reaction of aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate at room temperature under solvent free conditions. The principal affairs of this procedure are mild condition, short reaction times, easy work-up, high yields, reusability of the catalyst and the absence of toxic organic solvents.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kai-Long Zhong ◽  
Jing Quan ◽  
Xian-Xiao Pan ◽  
Wei Song ◽  
Bing-Feng Li

Abstract A new cadmium(II)-based coordination polymer [Cd3(FcCOO)6(4,4′-bipy)(H2O)2] n (FcCOO = ferrocenecarboxylato and 4,4′-bipy = 4,4′-bipyridine) has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The results of a crystal structural analysis has revealed that the title compound consists of two crystallographically unique CdII centers, one in a general position with a five-coordinated and one on an inversion center with a six-coordinated environment. The CdII centers are connected by FcCOO− units to form a metal carboxylate oxygen chain extending parallel to the [100] direction while the 4,4′-bipy ligands further act as bridging linkers of the CdII centers resulting in a layered polymer. In addition, an X-ray powder diffraction and thermal gravimetric analysis and a cyclo-voltammetric characterization of the complex have also been carried out.


2014 ◽  
Vol 687-691 ◽  
pp. 4327-4330
Author(s):  
Yan Wang ◽  
Zhe Sheng Feng ◽  
Lu Lin Wang ◽  
Jin Ju Chen ◽  
Zhen Yu He

Li0.97K0.03FePO4 and Li0.97K0.03FePO4/graphene composites were synthesized by carbothermal reduction method using acetylene black as carbon source. The structure and electrochemical properties of the prepared materials were investigated with X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, galvanostatic charge and discharge and electrochemical impedance spectra tests. The results indicated that K doping improves the cyclic stability of samples, the addition of small amounts of graphene results in better electronic properties on sample. Li0.97K0.03FePO4/graphene showed discharge capacity of 158.06 and 90.55 mAh g-1 at 0.1 C and 10 C, respectively. After the 50 cycle test at different rates, the reversible discharge capacity at 0.1 C was 158.58 mAh g-1, indicating the capacity retention ratio of 100.32%.


2012 ◽  
Vol 528 ◽  
pp. 35-38 ◽  
Author(s):  
Ping Qu ◽  
Xuan Wang ◽  
Li Ping Zhang

Reinforcement of polymer with plant whiskers is a way of improving mechanical properties. Cellulose nanowhiskers (CNW) were separated from commercially available wood pulpboard. Different microscopy techniques, thermal gravimetric analysis, X-ray diffraction were used to study the structure and properties of the microcrystalline cellulose (MCC) and CNW. Because of the high specific surface area of CNW, the increases in total amorphous character of the cellulose decrease the relative degree of crystallinity. After chemical and physical treatment, the CNW in the length of several μm and diameters ranging from 20 - 50 nm was obtained. Both the initial decomposing temperature and temperature of maximum decomposing rate of CNW is higher than MCC, but lower than wood pulpboard.


2014 ◽  
Vol 979 ◽  
pp. 440-443
Author(s):  
W. Siriprom ◽  
K. Teanchai ◽  
S. Kongsriprapan ◽  
J. Kaewkhao ◽  
N. Sangwaranatee

The chemical and physical properties of topsoil and subsoil which collected from the cassava cropping area in Chonburi Province have been investigated. The characterization of both soil sample were used X-Ray Diffraction (XRD), Energy Dispersive X-Ray Fluorescence (EDXRF) while FTIR used to confirmed the formation of intermolecular bonding and Thermo-Gravimetric Analysis (TGA) used for investigated the crystalline. It was found that, the XRD pattern indicated quartz phase. The chemical composition by XRF reported that the soils samples consist of Si, Al, Ca, Fe, K, Mn, Ti, Cr, Zn, Ag and Cu. and TGA results, noticed that the removal of moisture and organics material.


2013 ◽  
Vol 4 ◽  
pp. 665-670 ◽  
Author(s):  
Mario Marinaro ◽  
Santhana K Eswara Moorthy ◽  
Jörg Bernhard ◽  
Ludwig Jörissen ◽  
Margret Wohlfahrt-Mehrens ◽  
...  

Aprotic rechargeable Li–O2 batteries are currently receiving considerable interest because they can possibly offer significantly higher energy densities than conventional Li-ion batteries. The electrochemical behavior of Li–O2 batteries containing bis(trifluoromethane)sulfonimide lithium salt (LiTFSI)/tetraglyme electrolyte were investigated by galvanostatic cycling and electrochemical impedance spectroscopy measurements. Ex-situ X-ray diffraction and scanning electron microscopy were used to evaluate the formation/dissolution of Li2O2 particles at the cathode side during the operation of Li–O2 cells.


2013 ◽  
Vol 8 (2) ◽  
pp. 95-101
Author(s):  
Alexey Zaikovsky ◽  
Aleksandr Fedoseev ◽  
Salavat Sakhapov ◽  
Anton Evtushenko ◽  
Marina Serebriakova ◽  
...  

Experimental investigations of the possibility of arc discharge method for synthesis of nanoparticles of oxides and carbides of tungsten and aluminum have been presented. The method is based on anode atomization of composed graphite – aluminum and graphite – WO3 electrodes. The transmitted electron microscopy, thermal gravimetric analysis and X-ray diffraction were applied for the characterization of morphology and properties of synthesized materials. It was experimentally shown the arc discharge method allows to syntheses the nanoparticles of oxides and carbides of tungsten and aluminum


2021 ◽  
Author(s):  
Balaji Ayyanar Chninnappan ◽  
K. Marimuthu ◽  
C. Bharathiraj ◽  
B. Gayathri ◽  
S. K. Pradep Mohan

Abstract Samanea saman (SS) flower particulates were filled in Polylactic acid (PLA) composites were fabricated with different 0, 10, and 20 wt. % through the injection molding process. The elemental composition and morphology of SS PLA composites were studied through FESEM and Energy Dispersive X-ray analysis. Thermal stability of the SS PLA composites specimens was carried out through Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC). Crystal orientations studied through X-Ray Diffraction (XRD) showed the presence of the orthorhombic SS particulates. The properties of the composites were investigated such as tensile strength, compressive strength, flexural strength, and Shore D Hardness. It was found that 20 wt. % of SS filled PLA composites has a superior tensile strength of 43.76 MPa, the compression strength of 37.94 MPa, the flexural strength of 72.47 MPa, and Shore D Hardness of 80.1 SHN than pure PLA. SS particulates-filled PLA composites would be used for low-strength applications.


2011 ◽  
Vol 399-401 ◽  
pp. 1915-1918
Author(s):  
Rui Jie Guo ◽  
Xiao Juan Sha ◽  
Lei Lei Cao

The lamellar nanostructured yttrium films on α-Al2O3 substrates were successfully synthesized by electroless deposition using the lyotropic liquid crystalline templating strategy. The reaction of hydrazine hydrate and Y3+ dissolved within the aqueous domains of the lyotropic liquid crystalline phase produced the nanostructured yttrium films. The low-angle X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM) indicated that the as-resulted films possessed lamellar regular array of nanochannels with periodicity of 6 nm. With well-defined nanochannels and higher surface areas, the nanostructured films may find applications in the field of electronic materials.


1994 ◽  
Vol 6 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Kamal I Aly

A new interesting class of linear unsaturated polycarbonates based on 3,5-bis(p-hydroxybenzylidene)-isopropylpiperidinone (T), 3,5-divanillylidene isopropylpiperidinone (IT), or 3,5-bis(m-hydroxybenzylidene)-isopropylpiperidinone (III) have been synthesized. An interfacial phosgenation technique carried out at ambient temperature was used for the synthesis of the polycarbonates. The resulting polycarbonates were characterized by elemental analyses, infrared spectroscopy, 1H nuclear magnetic resonance spectral analysis, solubility and viscometry. The thermal behaviour of the synthesized polymers was evaluated by thermal gravimetric analysis and correlated with their structures. The crystallinity of all polymers was examined by x-ray diffraction analysis.


Sign in / Sign up

Export Citation Format

Share Document