scholarly journals Free Vibration of Single Walled Carbon Nanotube Resting on Exponentially Varying Elastic Foundation

2018 ◽  
Vol 5 (1) ◽  
pp. 260-272 ◽  
Author(s):  
Snehashish Chakraverty ◽  
Subrat Kumar Jena

Abstract In this article, free vibration of SingleWalled Carbon Nanotube (SWCNT) resting on exponentially varying Winkler elastic foundation is investigated by using Differential Quadrature Method (DQM). Euler-Bernoulli beam theory is considered in conjunction with the nonlocal elasticity theory of Eringen. Step by step procedure is included and MATLAB code has been developed to obtain the numerical results for different scaling parameters as well as for four types of edge conditions. Obtained results are validated with known results in special cases showing good agreement. Further, numerical as well as graphical results are illustrated to show the effects of nonuniform parameter, nonlocal parameter, aspect ratio,Winkler modulus parameter and edge conditions on the frequency parameters.

2019 ◽  
Vol 6 (1) ◽  
pp. 132-145 ◽  
Author(s):  
Subrat Kumar Jena ◽  
S. Chakraverty

AbstractThis article deals with free vibration of the variable cross-section (non-uniform) single-layered graphene nano-ribbons (SLGNRs) resting on Winkler elastic foundation using the Differential Quadrature Method (DQM). Here characteristic width of the cross-section is varied exponentially along the length of the nano-ribbon while the thickness of the cross section is kept constant. Euler–Bernoulli beam theory in conjunction with Eringen nonlocal elasticity theory is considered in this study. The numerical as well as graphical results are reported by using MATLAB codes developed by authors. Convergence of present method is explored and our results are compared with known results available in literature showing excellent agreement. Further, effects various parameters on frequency parameters are studied comprehensively.


2016 ◽  
Vol 16 (07) ◽  
pp. 1550029 ◽  
Author(s):  
P. Zahedinejad

The free vibration of functionally graded (FG) beams with various boundary conditions resting on a two-parameter elastic foundation in the thermal environment is studied using the third-order shear deformation beam theory. The material properties are temperature-dependent and vary continuously through the thickness direction of the beam, based on a power-law distribution in terms of the volume fraction of the material constituents. In order to discretize the governing equations, the differential quadrature method (DQM) in conjunction with the Hamilton’s principle is adopted. The convergence of the method is demonstrated. In order to validate the results, comparisons are made with solutions available for the isotropic and FG beams. Through a comprehensive parametric study, the effect of various parameters involved on the FG beam was studied. It is concluded that the uniform temperature rise has more significant effect on the frequency parameters than the nonuniform case.


2014 ◽  
Vol 06 (04) ◽  
pp. 1450043 ◽  
Author(s):  
S. CHAKRAVERTY ◽  
K. K. PRADHAN

In this paper, free vibration of functionally graded (FG) rectangular plates subject to different sets of boundary conditions within the framework of classical plate theory is investigated. Rayleigh–Ritz method is used to obtain the generalized eigenvalue problem. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any sets of boundary conditions. Material properties of the FG plate are assumed to vary continuously in the thickness direction of the constituents according to power-law form. The objective is to study the effects of constituent volume fractions, aspect ratios and power-law indices on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. Comparison with the results from the existing literature are provided for validation in special cases. Three-dimensional mode shapes are presented for FG square plates having various boundary conditions at the edges for different power-law indices. The present investigation also involves the rectangular FG plate to lay on a uniform Winkler elastic foundation. New results for the eigenfrequencies associated with foundation parameters are also reported here with the validation in special cases after checking a convergence pattern.


2017 ◽  
Vol 28 (15) ◽  
pp. 2007-2022 ◽  
Author(s):  
Farzad Ebrahimi ◽  
Mohammad Reza Barati

This article investigates vibration behavior of magneto-electro-elastic functionally graded nanobeams embedded in two-parameter elastic foundation using a third-order parabolic shear deformation beam theory. Material properties of magneto-electro-elastic functionally graded nanobeam are supposed to be variable throughout the thickness based on power-law model. Based on Eringen’s nonlocal elasticity theory which captures the small size effects and using Hamilton’s principle, the nonlocal governing equations of motions are derived and then solved analytically. Then, the influences of elastic foundation, magnetic potential, external electric voltage, nonlocal parameter, power-law index, and slenderness ratio on the frequencies of the embedded magneto-electro-elastic functionally graded nanobeams are studied.


Author(s):  
Reza Ebrahimi

The existence of chaos in the lateral vibration of the carbon nanotube (CNT) can contribute to source of instability and inaccuracy within the nano mechanical systems. So, chaotic vibrations of a simply supported CNT which is subjected to a traversing harmonic force are studied in this paper. The model of the system is formulated by using nonlocal Euler–Bernoulli beam theory. The equation of motion is solved using the Rung–Kutta method. The effects of the nonlocal parameter, velocity and amplitude of the traversing harmonic force on the nonlinear dynamic response of the system are analyzed by the bifurcation diagrams, phase plane portrait, power spectra analysis, Poincaré map and the maximum Lyapunov exponent. The results indicate that the nonlocal parameter, velocity and amplitude of the traversing harmonic force have considerable effects on the bifurcation behavior and can be used as effective control parameters for avoiding chaos.


2018 ◽  
Vol 5 (1) ◽  
pp. 201-212 ◽  
Author(s):  
Subrat Kumar Jena ◽  
S. Chakraverty

Abstract In this paper, Differential Quadrature Method (DQM) is applied to investigate free vibration of Single Walled Carbon Nanotubes (SWCNTs) with exponentially varying stiffness based on non-local Euler-Bernoulli beam theory. Application of DQ method in the governing differential equation converts the problem to a generalized eigenvalue problem and its solution gives frequency parameters. Convergence of the results show that DQM solutions converge fast. In this article, a detailed investigation has been reported and MATLAB code has been developed to analyze the numerical results for different scaling parameters as well as for four types of boundary conditions. Present results are compared with other available results and are found to be in good agreement.


2017 ◽  
Vol 24 (17) ◽  
pp. 3809-3818 ◽  
Author(s):  
Farzad Ebrahimi ◽  
Mohammad Reza Barati ◽  
Parisa Haghi

The present research deals with the wave dispersion behavior of a rotating functionally graded material (FGMs) nanobeam applying nonlocal elasticity theory of Eringen. Material properties of rotating FG nanobeam are spatially graded according to a power-law model. The governing equations as functions of axial force due to centrifugal stiffening and displacements are obtained by employing Hamilton’s principle based on the Euler–Bernoulli beam theory. By using an analytical model, the dispersion relations of the FG nanobeam are derived by solving an eigenvalue problem. Numerical results clearly show that various parameters, such as angular velocity, gradient index, wave number and nonlocal parameter, are significantly effective to characteristics of wave propagations of rotating FG nanobeams. The results can be useful for next generation study and design of nanomachines, such as nanoturbines, nanoscale molecular bearings and nanogears, etc.


Author(s):  
P Soltani ◽  
P Bahar ◽  
A Farshidianfar

In this article, the free transverse vibrational behaviour of a multiwall carbon nanotube (MWNT) surrounded by a Pasternak-type elastic medium has been determined using a very generalized model. The model has been made on the basis of Timoshenko elastic beam theory which allows the effects of shear deformation and rotary inertia and supports non-coaxial vibration of the adjacent layers of MWNT using interlayer van der Waals forces. The boundary conditions used in this simulation are such that not only standard and conventional kinds, but also all possible forms, of end conditions are applicable. A generalized differential quadrature method is utilized to solve the governing equations with assorted aspect ratios, various boundary conditions, and different foundation stiffnesses. This study shows that the resonant frequencies of MWNTs are strongly dependent on the stiffness of the elastic medium, aspect ratios, and number of walls in carbon nanotubes and, for short nanotubes, the boundary stiffness plays a significant role on the natural frequencies.


2017 ◽  
Vol 09 (04) ◽  
pp. 1750051 ◽  
Author(s):  
Hu Ding ◽  
Minghui Zhu ◽  
Zhen Zhang ◽  
Ye-Wei Zhang ◽  
Li-Qun Chen

In the present paper, free vibration of a rotating ring supported by an elastic foundation is studied by analytical method, finite element (FE) simulation and experiment. By adopting the ring analogy of Timoshenko beam theory, the nonlinear vibration of the rotating ring on an elastic foundation is modeled based on Hamilton’s principle. Radial and tangential deformation are considered. By solving the generalized eigenvalue problem, natural frequencies and flexural modes are obtained. Furthermore, the Euler–Bernoulli (E–B) theory is also employed to investigate the free vibration. For determining the necessity of the Timoshenko theory, the flexural vibration frequencies from two theories are compared. Specifically, the effects of the radius and the radial height (the thickness) of the ring on the difference between the two models are studied. In order to confirm the analytical results, finite element analysis and experiments on three test specimens are used to verify the natural frequency and flexural mode predictions. Overall, this work shows the necessity of the Timoshenko theory for studying free vibration of an elastic ring.


Sign in / Sign up

Export Citation Format

Share Document