Study on corrosion investigations in industrial effluents: a review

2019 ◽  
Vol 37 (2) ◽  
pp. 115-130
Author(s):  
Chhotu Ram ◽  
Bushra Zaman ◽  
Amit Dhir

AbstractCorrosion affects the usefulness of metallic materials used in the construction of an effluent treatment plant (ETP). The present report investigates the corrosive and inhibitive properties of the chemicals present in the effluent of paper mill and distillery industries. Chemicals such as chloride, chlorophenols, phosphate, calcium, nitrite, and nitrate enhance corrosion, whereas the presence of sulfate, potassium, organic matter, and melanoidins (color) inhibits corrosion at an acidic pH level in distillery and paper mill effluents. A finding shows that pH level has an important role in increasing or decreasing the effect on corrosivity of effluents.

2016 ◽  
Vol 8 (2) ◽  
pp. 25-31 ◽  
Author(s):  
MRH Sarker ◽  
A Razzaque ◽  
MM Hoque ◽  
S Roy ◽  
MK Hossain

Textile industries are the major contributor to environmental pollution and health hazards by generating huge amount of effluents that contain several pollutants and coloring agents. The concentration of these pollutants can be reduced to the permissible limit with the help of an Effluent Treatment Plant (ETP). The study was conducted to observe the textile effluent management techniques of an Effluent Treatment Plant (ETP) of Fakir Knitwear Limited (FKL), Narayanganj, Bangladesh. FKL set up a biological treatment plant to treat the effluent generated by the industry. Different effluent quality parameters were investigated at different stages in ETP. The effluent of the outlet was dark colored probably because of soluble coloring materials of the effluent but it is comparatively better than that of raw wastewater. There were found higher EC values than the standards which indicated that the greater amount of salts in the water due to dumping of solid wastes and discharging of industrial effluents. The highest TDS value 2054 ppm was observed at the screening pit unit than the other parts of the ETP. The highest DO was found 4.58 ppm in clarification tank which was within the standard value of aquaculture. The study also showed that the lowest BOD (24 ppm) and COD (145 ppm) was found at the outlet which was comparatively better than others. Although the effluent from the outlet contained pollutants, these effluent quality was comparatively good than the untreated waste water discharged from the industry. After treatment, the effluent of outlet moderately ensures the standard quality for aquaculture and irrigation. The results suggested that it is obvious to run the ETP regularly to improve the quality of effluents to save our native environment from the harmful effects of wastewater.J. Environ. Sci. & Natural Resources, 8(2): 25-31 2015


2016 ◽  
Vol 75 (1) ◽  
pp. 182-188 ◽  
Author(s):  
Asma Ahmed ◽  
Nimmakayala Jyothi ◽  
Adithya Ramesh

A single step process is proposed for ammonium removal from nitrogenous industrial effluents, with a concomitant generation of algal biomass. A microalgal strain found in the effluent treatment plant of a fertilizer industry in Mumbai, India was systematically adapted to remove up to 700 ppm of ammoniacal nitrogen from industrial wastewater, which is nearly four times higher than the ammonium tolerance reported in the literature as well as other algal strains tested in our laboratory. 18S rRNA sequencing revealed the strain to be Chlorella pyrenoidosa. Effects of process parameters such as pH, temperature and light intensity on cell growth and ammonium removal by the adapted cells were studied. Optimal conditions were found to be pH of 9, temperature of 30 °C and a light intensity of 3,500 Lux for the adapted cells.


Author(s):  
Shipra Jha ◽  
S. N. Dikshit

Heavy metal pollution in wastewater has always been a serious environmental problem because heavy metals are not biodegradable and can be accumulated in living tissues. Copper is widely used in various important industrial applications. The increasing level of heavy metals in the aquatic system due to incomplete treatment of industrial wastewater by existing conventional methods is of environmental concern. Therefore, there has been an increasing interest in the possibility of using biological treatments. It is important to evaluate the performance of biomass with actual industrial effluent to ensure its field applicability. Hence the experiments were conducted with actual industrial effluents collected from Effluent Treatment Plant (ETP) and tannery industry.


Nukleonika ◽  
2017 ◽  
Vol 62 (4) ◽  
pp. 289-294 ◽  
Author(s):  
Metali Sarkar ◽  
Vikas K. Sangal ◽  
Haripada Bhunia ◽  
Pramod K. Bajpai ◽  
Harish J. Pant ◽  
...  

Abstract The pulp and paper industry is highly dependent on water for most of its processes, producing a significant amount of wastewater that should be treated to comply with environmental standards before its discharge into surface-water reservoirs. The wastewater generated primarily consists of substantial amounts of organic, inorganic, toxic and pathogenic compounds in addition to nutrients, which are treated in an effluent treatment plant that often combines primary, secondary, tertiary and advanced treatments. However, the treatment methods vary from industry to industry according to the process utilized. The effective performance of effluent treatment plants is crucial from both environmental and economic points of view. Radiotracer techniques can be effectively used to optimize performance and detect anomalies like dead zones, bypassing, channelling, etc. in wastewater treatment plants. Experiments on the distribution of residence time were performed on the aeration tank and secondary clarifier of a full-scale pulp and paper mill to study the flow behaviour as well as locate system anomalies and hence evaluate the performance of the treatment plants using the radiotracer I-131. The convolution method was applied to model the system with an imperfect impulse radiotracer input. The aeration tank was working efficiently in the absence of any dead zones or bypassing. Various hydrodynamic models available in the literature were applied on the aeration tank and secondary clarifier to obtain the hydraulic representation of the systems.


1988 ◽  
Vol 20 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Rurik Skogman ◽  
Reino Lammi

The requirements imposed on the Finnish forest products industry by the water authorities have focused on the reduction of BOD and suspended solids in the wastewaters. The industry has tried to comply with these requirements, first through internal measures such as process changes and closed systems. When these have not been sufficient, external treatment has been resorted to. The Wilh. Schauman Company in Jakobstad has chosen activated sludge with extended aeration from among the available methods for treating effluent. The plant has operated since the beginning of 1986 with extremely good results. In addition to the reduction of BOD and suspended solids, there has been a marked decrease of chlorinated phenols. Chlorinated substances with higher molecular weight are also removed during the process.


1994 ◽  
Vol 30 (3) ◽  
pp. 173-181 ◽  
Author(s):  
L. Knudsen ◽  
J. A. Pedersen ◽  
J. Munck

The work presented in this paper concerns the application of a two-stage aerobic activated sludge process for treatment of effluents from paper mills in Denmark. The paper describes both pilot-scale test results and fullscale experience with the process. The treatment process is characterised by a bigh-load first stage (2-4 kg COD/kg MLSSxd) followed by a low-load second stage to secure full nitrification and denitrification of remaining nitrogen compounds. The results of continuous pilot-scale tests show that it is possible to obtain a reduction of more than 85% of the incoming COD,01 and a 99% reduction of the incoming BOD5, resulting in an effluent quality of 230 mg CODsol/l and less than 10 mg BOD5/l. As indicated, practically all the biodegradable organic substances are removed by the process. The remaining fraction of soluble organics measured as COD is considered to be non-biodegradable by conventional biological treatment systems. The results produced in the pilot-scale tests are confirmed by the effluent qualities obtained in a full-scale treatment plant at another paper mill, involving an identical process concept. During the pilot-scale tests, special attention bas been paid to the removal of organic compounds, organic nitrogen as well as nutrients and nitrification. In addition, the sludge characteristics and the oxygen requirements have been considered.


1992 ◽  
Vol 25 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Larbi Tebai ◽  
Ioannis Hadjivassilis

Soft drinks industry wastewater from various production lines is discharged into the Industrial Effluent Treatment Plant. The traditional coagulation/flocculation method as first step, followed by biological treatment as second step, has been adopted for treating the soft drinks industry wastewaters. The performance of the plant has been evaluated. It has been found that the effluent characteristics are in most cases in correspondence with the requested standards for discharging the effluent into the Nicosia central sewerage system.


Sign in / Sign up

Export Citation Format

Share Document