scholarly journals Modelling spreading of an infection using time series by a novel family of models; fitting the time series of the confirmed cases of COVID-19 in China

2020 ◽  
Vol 9 (s1) ◽  
Author(s):  
Babak Jamshidi ◽  
Shahriar Jamshidi Zargaran ◽  
Mansour Rezaei

AbstractIntroductionTime series models are one of the frequently used methods to describe the pattern of spreading an epidemic.MethodsWe presented a new family of time series models able to represent the cumulative number of individuals that contracted an infectious disease from the start to the end of the first wave of spreading. This family is flexible enough to model the propagation of almost all infectious diseases. After a general discussion on competent time series to model the outbreak of a communicable disease, we introduced the new family through one of its examples.ResultsWe estimated the parameters of two samples of the novel family to model the spreading of COVID-19 in China.DiscussionOur model does not work well when the decreasing trend of the rate of growth is absent because it is the main presumption of the model. In addition, since the information on the initial days is of the utmost importance for this model, one of the challenges about this model is modifying it to get qualified to model datasets that lack the information on the first days.

Author(s):  
Hemanta K. Barauh

AbstractEpidemiological mathematical models and time series models can be used to forecast about the spread of an infectious disease. In this article, without using such models, we are going to show how exactly the pattern evolves day by day once a pattern is seen to be approximately followed by the data. Although in Italy as well as in India the novel corona virus appeared on the same day, in Italy the spread is nearly logarithmic by now and in India it is nearly exponential even now.


Author(s):  
Senol Celik ◽  
Handan Ankarali ◽  
Ozge Pasin

ABSTRACT Objectives: The objective of this study is to compare the various nonlinear and time series models in describing the course of the coronavirus disease 2019 (COVID-19) outbreak in China. To this aim, we focus on 2 indicators: the number of total cases diagnosed with the disease, and the death toll. Methods: The data used for this study are based on the reports of China between January 22 and June 18, 2020. We used nonlinear growth curves and some time series models for prediction of the number of total cases and total deaths. The determination coefficient (R2), mean square error (MSE), and Bayesian Information Criterion (BIC) were used to select the best model. Results: Our results show that while the Sloboda and ARIMA (0,2,1) models are the most convenient models that elucidate the cumulative number of cases; the Lundqvist-Korf model and Holt linear trend exponential smoothing model are the most suitable models for analyzing the cumulative number of deaths. Our time series models forecast that on 19 July, the number of total cases and total deaths will be 85,589 and 4639, respectively. Conclusion: The results of this study will be of great importance when it comes to modeling outbreak indicators for other countries. This information will enable governments to implement suitable measures for subsequent similar situations.


2006 ◽  
Vol 25 (24) ◽  
pp. 4179-4196 ◽  
Author(s):  
Simon H. Heisterkamp ◽  
Arnold L. M. Dekkers ◽  
Janneke C. M. Heijne

Health Scope ◽  
2020 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Babak Jamshidi ◽  
Mansour Rezaei ◽  
Khansa Rezaei

Background: It is extremely useful to construct mathematical models to forecast and control real phenomena. One of the common applied statistical models to represent the data involving with time is the time series modeling. A novel time series model to represent the propagation of an epidemic infection in a population is presented. The model deals with addressing the cumulative number of confirmed cases. Methods: Our model is the generalization of statistical exponential growth models and can describe different stages of the outbreak of a communicable disease. Applying the mentioned procedure leads to models CVJR1 (3.2, 1.44, 3, and 13) for modeling the sequence of COVID-19 from January 13 to March 5. All computations and 200 simulations were done in MatLab 8.6. Results: For comparing candidates through fitting the dataset for six pairs of (Î and â), we used the minimum criterion square of residuals. We present the average and 90% upper and lower bounds of the predictions made by our models for three periods. Applying the mentioned procedure led to having models with parameters (3.2, 1.44, 3, and 13) for modeling the course of COVID-19 from January 13 to March 5. Conclusions: The presented model can cover the epidemic behaviors related to social networks. Our model can be adjusted to worldwide modeling for modeling a phenomenon spreading in different populations simultaneously.


Author(s):  
Bin Zhao

Background: Since the first appearance of the novel coronavirus in Wuhan in December 2019, it has quickly swept the world and become a major security incident facing humanity today. While the novel coronavirus threatens people's lives and safety, the economies of various countries have also been severely damaged. Due to the epidemic, a large number of enterprises have faced closures, employment has become more difficult, and people's lives have been greatly affected. Therefore, to establish a time series model for Hubei Province, where the novel coronavirus first broke out, and the United States, where the epidemic is most severe, to analyze the spreading trend and short-term forecast of the new coronavirus, which will help countries better understand the development trend of the epidemic and make more adequate preparation and timely intervention and treatment to prevent the further spread of the virus. Methods: For the data collected from Hubei Province, including cumulative diagnoses, cumulative deaths, and cumulative cures, we use SPSS to establish the time series model. Since there is no problem of missing data values, we define days as the time variable, remove outliers, and set the width of the confidence interval to 95% for prediction, then use SPSS's expert modeler to find the best-fit model for each sequence. ACF, PACF graphs of the residuals, and Q-tests are used to determine whether the residuals are white noise sequences and to check whether the model is a suitable model. Holt model is used for the cumulative number of diagnoses, and ARIMA (1,2,0) model is used for cumulative cures and deaths. Similarly, we also collect data for the US, including the cumulative number of diagnoses, cumulative deaths, and cumulative cures. For the three groups mentioned above, ARIMA (2,2,6) model, ARIMA (0,2,0) model, and ARIMA (0,2,1) model is used respectively. Findings: From our modeling of the data, the time series diagrams of the real the fitted data almost overlap, so the fitting effect of the Holt model and the ARIMA model we use is very suitable. We compare the predicted values with the real values of the same period and find that the epidemic situation in Hubei Province has basically ended after May, but the epidemic situation in the United States has become more severe after May, so the Holt model and the ARIMA model are also very appropriate in predicting the epidemic situation in short-term. Interpretation: Because the Chinese government has always put the safety of people’s lives in the first place, when the epidemic broke out, it decisively closed the city of Hubei Province. One side is in trouble, all sides support, they concentrate all resources of whole country to save Hubei Province at the expense of the economy only in order to save more people. Now we can clearly see that the epidemic has been controlled in China and the whole country is developing in a good direction. The situation in the United States, on the other hand, is also influenced by the social environment.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242762
Author(s):  
Muhammad Ali ◽  
Dost Muhammad Khan ◽  
Muhammad Aamir ◽  
Umair Khalil ◽  
Zardad Khan

Objectives Forecasting epidemics like COVID-19 is of crucial importance, it will not only help the governments but also, the medical practitioners to know the future trajectory of the spread, which might help them with the best possible treatments, precautionary measures and protections. In this study, the popular autoregressive integrated moving average (ARIMA) will be used to forecast the cumulative number of confirmed, recovered cases, and the number of deaths in Pakistan from COVID-19 spanning June 25, 2020 to July 04, 2020 (10 days ahead forecast). Methods To meet the desire objectives, data for this study have been taken from the Ministry of National Health Service of Pakistan’s website from February 27, 2020 to June 24, 2020. Two different ARIMA models will be used to obtain the next 10 days ahead point and 95% interval forecast of the cumulative confirmed cases, recovered cases, and deaths. Statistical software, RStudio, with “forecast”, “ggplot2”, “tseries”, and “seasonal” packages have been used for data analysis. Results The forecasted cumulative confirmed cases, recovered, and the number of deaths up to July 04, 2020 are 231239 with a 95% prediction interval of (219648, 242832), 111616 with a prediction interval of (101063, 122168), and 5043 with a 95% prediction interval of (4791, 5295) respectively. Statistical measures i.e. root mean square error (RMSE) and mean absolute error (MAE) are used for model accuracy. It is evident from the analysis results that the ARIMA and seasonal ARIMA model is better than the other time series models in terms of forecasting accuracy and hence recommended to be used for forecasting epidemics like COVID-19. Conclusion It is concluded from this study that the forecasting accuracy of ARIMA models in terms of RMSE, and MAE are better than the other time series models, and therefore could be considered a good forecasting tool in forecasting the spread, recoveries, and deaths from the current outbreak of COVID-19. Besides, this study can also help the decision-makers in developing short-term strategies with regards to the current number of disease occurrences until an appropriate medication is developed.


2021 ◽  
Vol 18 (182) ◽  
Author(s):  
Andrew Harvey ◽  
Paul Kattuman

The time-dependent reproduction number, R t , is a key metric used by epidemiologists to assess the current state of an outbreak of an infectious disease. This quantity is usually estimated using time-series observations on new infections combined with assumptions about the distribution of the serial interval of transmissions. Bayesian methods are often used with the new cases data smoothed using a simple, but to some extent arbitrary, moving average. This paper describes a new class of time-series models, estimated by classical statistical methods, for tracking and forecasting the growth rate of new cases and deaths. Very few assumptions are needed and those that are made can be tested. Estimates of R t , together with their standard deviations, are obtained as a by-product.


Marketing ZFP ◽  
2010 ◽  
Vol 32 (JRM 1) ◽  
pp. 24-29
Author(s):  
Marnik G. Dekimpe ◽  
Dominique M. Hanssens

2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.


Sign in / Sign up

Export Citation Format

Share Document