scholarly journals Forecasting COVID-19 in Pakistan

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242762
Author(s):  
Muhammad Ali ◽  
Dost Muhammad Khan ◽  
Muhammad Aamir ◽  
Umair Khalil ◽  
Zardad Khan

Objectives Forecasting epidemics like COVID-19 is of crucial importance, it will not only help the governments but also, the medical practitioners to know the future trajectory of the spread, which might help them with the best possible treatments, precautionary measures and protections. In this study, the popular autoregressive integrated moving average (ARIMA) will be used to forecast the cumulative number of confirmed, recovered cases, and the number of deaths in Pakistan from COVID-19 spanning June 25, 2020 to July 04, 2020 (10 days ahead forecast). Methods To meet the desire objectives, data for this study have been taken from the Ministry of National Health Service of Pakistan’s website from February 27, 2020 to June 24, 2020. Two different ARIMA models will be used to obtain the next 10 days ahead point and 95% interval forecast of the cumulative confirmed cases, recovered cases, and deaths. Statistical software, RStudio, with “forecast”, “ggplot2”, “tseries”, and “seasonal” packages have been used for data analysis. Results The forecasted cumulative confirmed cases, recovered, and the number of deaths up to July 04, 2020 are 231239 with a 95% prediction interval of (219648, 242832), 111616 with a prediction interval of (101063, 122168), and 5043 with a 95% prediction interval of (4791, 5295) respectively. Statistical measures i.e. root mean square error (RMSE) and mean absolute error (MAE) are used for model accuracy. It is evident from the analysis results that the ARIMA and seasonal ARIMA model is better than the other time series models in terms of forecasting accuracy and hence recommended to be used for forecasting epidemics like COVID-19. Conclusion It is concluded from this study that the forecasting accuracy of ARIMA models in terms of RMSE, and MAE are better than the other time series models, and therefore could be considered a good forecasting tool in forecasting the spread, recoveries, and deaths from the current outbreak of COVID-19. Besides, this study can also help the decision-makers in developing short-term strategies with regards to the current number of disease occurrences until an appropriate medication is developed.

2011 ◽  
Vol 10 (3) ◽  
pp. 17
Author(s):  
James E. Payne ◽  
Robert R. Sharp ◽  
Susan A. Simmons

The thoroughbred breeding industry in North America has fallen on hard times. The health of this industry is often gauged by prices obtained for yearlings at North American auctions, particularly the average prices of summer sales at Keeneland and Saratoga. We examine various exponential smoothing algorithms along with a market-based structural model, as well as an ARIMA model in generating one-step ahead forecasts. The market-based structural model outperforms the other approaches with respect to both in- and out-of-sample forecasting accuracy.


2020 ◽  
Vol 9 (s1) ◽  
Author(s):  
Babak Jamshidi ◽  
Shahriar Jamshidi Zargaran ◽  
Mansour Rezaei

AbstractIntroductionTime series models are one of the frequently used methods to describe the pattern of spreading an epidemic.MethodsWe presented a new family of time series models able to represent the cumulative number of individuals that contracted an infectious disease from the start to the end of the first wave of spreading. This family is flexible enough to model the propagation of almost all infectious diseases. After a general discussion on competent time series to model the outbreak of a communicable disease, we introduced the new family through one of its examples.ResultsWe estimated the parameters of two samples of the novel family to model the spreading of COVID-19 in China.DiscussionOur model does not work well when the decreasing trend of the rate of growth is absent because it is the main presumption of the model. In addition, since the information on the initial days is of the utmost importance for this model, one of the challenges about this model is modifying it to get qualified to model datasets that lack the information on the first days.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1122
Author(s):  
Oksana Mandrikova ◽  
Nadezhda Fetisova ◽  
Yuriy Polozov

A hybrid model for the time series of complex structure (HMTS) was proposed. It is based on the combination of function expansions in a wavelet series with ARIMA models. HMTS has regular and anomalous components. The time series components, obtained after expansion, have a simpler structure that makes it possible to identify the ARIMA model if the components are stationary. This allows us to obtain a more accurate ARIMA model for a time series of complicated structure and to extend the area for application. To identify the HMTS anomalous component, threshold functions are applied. This paper describes a technique to identify HMTS and proposes operations to detect anomalies. With the example of an ionospheric parameter time series, we show the HMTS efficiency, describe the results and their application in detecting ionospheric anomalies. The HMTS was compared with the nonlinear autoregression neural network NARX, which confirmed HMTS efficiency.


Author(s):  
Senol Celik ◽  
Handan Ankarali ◽  
Ozge Pasin

ABSTRACT Objectives: The objective of this study is to compare the various nonlinear and time series models in describing the course of the coronavirus disease 2019 (COVID-19) outbreak in China. To this aim, we focus on 2 indicators: the number of total cases diagnosed with the disease, and the death toll. Methods: The data used for this study are based on the reports of China between January 22 and June 18, 2020. We used nonlinear growth curves and some time series models for prediction of the number of total cases and total deaths. The determination coefficient (R2), mean square error (MSE), and Bayesian Information Criterion (BIC) were used to select the best model. Results: Our results show that while the Sloboda and ARIMA (0,2,1) models are the most convenient models that elucidate the cumulative number of cases; the Lundqvist-Korf model and Holt linear trend exponential smoothing model are the most suitable models for analyzing the cumulative number of deaths. Our time series models forecast that on 19 July, the number of total cases and total deaths will be 85,589 and 4639, respectively. Conclusion: The results of this study will be of great importance when it comes to modeling outbreak indicators for other countries. This information will enable governments to implement suitable measures for subsequent similar situations.


1970 ◽  
Vol 8 (1) ◽  
pp. 103-112 ◽  
Author(s):  
NMF Rahman

The study was undertaken to examine the best fitted ARIMA model that could be used to make efficient forecast boro rice production in Bangladesh from 2008-09 to 2012-13. It appeared from the study that local, modern and total boro time series are 1st order homogenous stationary. It is found from the study that the ARIMA (0,1,0) ARIMA (0,1,3) and ARIMA (0,1,2) are the best for local, modern and total boro rice production respectively. It is observed from the analysis that short term forecasts are more efficient for ARIMA models. The production uncertainty of boro rice can be minimizing if production can be forecasted well and necessary steps can be taken against losses. The government and producer as well use ARIMA methods to forecast future production more accurately in the short run. Keywords: Production; ARIMA model; Forecasting. DOI: 10.3329/jbau.v8i1.6406J. Bangladesh Agril. Univ. 8(1): 103-112, 2010


2019 ◽  
Vol 4 (3) ◽  
pp. 58
Author(s):  
Lu Qin ◽  
Kyle Shanks ◽  
Glenn Allen Phillips ◽  
Daphne Bernard

The Autoregressive Integrated Moving Average model (ARIMA) is a popular time-series model used to predict future trends in economics, energy markets, and stock markets. It has not been widely applied to enrollment forecasting in higher education. The accuracy of the ARIMA model heavily relies on the length of time series. Researchers and practitioners often utilize the most recent - to -years of historical data to predict future enrollment; however, the accuracy of enrollment projection under different lengths of time series has never been investigated and compared. A simulation and an empirical study were conducted to thoroughly investigate the accuracy of ARIMA forecasting under four different lengths of time series. When the ARIMA model completely captured the historical changing trajectories, it provided the most accurate predictions of student enrollment with 20-years of historical data and had the lowest forecasting accuracy with the shortest time series. The results of this paper contribute as a reference to studies in the enrollment projection and time-series forecasting. It provides a practical impact on enrollment strategies, budges plans, and financial aid policies at colleges and institutions across countries.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Tomoyuki Amano

CHARN model is a famous and important model in the finance, which includes many financial time series models and can be assumed as the return processes of assets. One of the most fundamental estimators for financial time series models is the conditional least squares (CL) estimator. However, recently, it was shown that the optimal estimating function estimator (G estimator) is better than CL estimator for some time series models in the sense of efficiency. In this paper, we examine efficiencies of CL and G estimators for CHARN model and derive the condition that G estimator is asymptotically optimal.


2021 ◽  
Author(s):  
Jan Wolff ◽  
Ansgar Klimke ◽  
Michael Marschollek ◽  
Tim Kacprowski

Introduction The COVID-19 pandemic has strong effects on most health care systems and individual services providers. Forecasting of admissions can help for the efficient organisation of hospital care. We aimed to forecast the number of admissions to psychiatric hospitals before and during the COVID-19 pandemic and we compared the performance of machine learning models and time series models. This would eventually allow to support timely resource allocation for optimal treatment of patients. Methods We used admission data from 9 psychiatric hospitals in Germany between 2017 and 2020. We compared machine learning models with time series models in weekly, monthly and yearly forecasting before and during the COVID-19 pandemic. Our models were trained and validated with data from the first two years and tested in prospectively sliding time-windows in the last two years. Results A total of 90,686 admissions were analysed. The models explained up to 90% of variance in hospital admissions in 2019 and 75% in 2020 with the effects of the COVID-19 pandemic. The best models substantially outperformed a one-step seasonal naive forecast (seasonal mean absolute scaled error (sMASE) 2019: 0.59, 2020: 0.76). The best model in 2019 was a machine learning model (elastic net, mean absolute error (MAE): 7.25). The best model in 2020 was a time series model (exponential smoothing state space model with Box-Cox transformation, ARMA errors and trend and seasonal components, MAE: 10.44), which adjusted more quickly to the shock effects of the COVID-19 pandemic. Models forecasting admissions one week in advance did not perform better than monthly and yearly models in 2019 but they did in 2020. The most important features for the machine learning models were calendrical variables. Conclusion Model performance did not vary much between different modelling approaches before the COVID-19 pandemic and established forecasts were substantially better than one-step seasonal naive forecasts. However, weekly time series models adjusted quicker to the COVID-19 related shock effects. In practice, different forecast horizons could be used simultaneously to allow both early planning and quick adjustments to external effects.


Author(s):  
Isra Al-Turaiki ◽  
Fahad Almutlaq ◽  
Hend Alrasheed ◽  
Norah Alballa

COVID-19 is a disease-causing coronavirus strain that emerged in December 2019 that led to an ongoing global pandemic. The ability to anticipate the pandemic’s path is critical. This is important in order to determine how to combat and track its spread. COVID-19 data is an example of time-series data where several methods can be applied for forecasting. Although various time-series forecasting models are available, it is difficult to draw broad theoretical conclusions regarding their relative merits. This paper presents an empirical evaluation of several time-series models for forecasting COVID-19 cases, recoveries, and deaths in Saudi Arabia. In particular, seven forecasting models were trained using autoregressive integrated moving average, TBATS, exponential smoothing, cubic spline, simple exponential smoothing Holt, and HoltWinters. The models were built using publicly available daily data of COVID-19 during the period of 24 March 2020 to 5 April 2021 reported in Saudi Arabia. The experimental results indicate that the ARIMA model had a smaller prediction error in forecasting confirmed cases, which is consistent with results reported in the literature, while cubic spline showed better predictions for recoveries and deaths. As more data become available, a fluctuation in the forecasting-accuracy metrics was observed, possibly due to abrupt changes in the data.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11748
Author(s):  
Akini James ◽  
Vrijesh Tripathi

Objective This paper incorporates the concept of acceleration to fatalities caused by the coronavirus in Brazil from time series data beginning on 17th March 2020 (the day of the first death) to 3rd February 2021 to explain the trajectory of the fatalities for the next six months using confirmed infections as the explanatory variable. Methods Acceleration of the cases of confirmed infection and fatalities were calculated by using the concept of derivatives. Acceleration of fatality function was then determined from multivariate linear function and calculus chain rule for composite function with confirmed infections as an explanatory variable. Different ARIMA models were fitted for each acceleration of fatality function: the de-seasonalized Auto ARIMA Model, the adjusted lag model, and the auto ARIMA model with seasonality. The ARIMA models were validated. The most realistic models were selected for each function for forecasting. Finally, the short run six-month forecast was conducted on the trajectory of the acceleration of fatalities for all the selected best ARIMA models. Results It was found that the best ARIMA model for the acceleration functions were the seasonalized models. All functions suggest a general decrease in fatalities and the pace at which this change occurs will eventually slow down over the next six months. Conclusion The decreasing fatalities over the next six-month period takes into consideration the direct impact of the confirmed infections. There is an early increase in acceleration for the forecast period, which suggests an increase in daily fatalities. The acceleration eventually reduces over the six-month period which shows that fatalities will eventually decrease. This gives health officials an idea on how the fatalities will be affected in the future as the trajectory of confirmed COVID-19 infections change.


Sign in / Sign up

Export Citation Format

Share Document