Lipase-catalyzed synthesis and post-polymerization modification of new fully bio-based poly(hexamethylene γ-ketopimelate) and poly(hexamethylene γ-ketopimelate-co-hexamethylene adipate) copolyesters

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 214-225
Author(s):  
Wan-Xia Wu

AbstractA novel full bio-based ketone-containing aliphatic polyester was prepared by enzyme-catalyzed polycondensation of diethyl γ-ketopimelate (DEK) with 1,6-hexanediol (HDO) using immobilized lipase B from Candida antarctica (CALB). The influences of polymerization conditions such as temperature, time, enzyme amount, and solvent amount on the molecular weight of poly(hexamethylene γ-ketopimelate) (PHK) were investigated. New fully bio-based poly(hexamethylene γ-ketopimelate-co-hexamethylene adipate) (poly(HK-co-HA)) copolymers with narrow polydispersity and well-defined composition were synthesized by copolymerization of DEK, HDO, and diethyl adipate. The structures of PHK and poly(HK-co-HA) copolymers were characterized by nuclear magnetic resonance, and their thermal characterization was examined by thermogravimetric analysis and differential scanning calorimetry. The degradation of PHK and poly(HK-co-HA) copolymers was studied. The post-polymerization modification of these polyketoesters via oxime click chemistry was further demonstrated.

2021 ◽  
Vol 1 (2) ◽  
pp. 26-33
Author(s):  
Rasidi Roslan ◽  
Muhammad Nor Arifin Yaakob ◽  
Ms Fathihah

Lignin is a sub-product from lignocellulose apart from cellulose and hemicellulose that produced from empty fruit bunch fiber (EFB). Lignin has low solubility and reactivity due to its bulky macromolecule structre. Being one of the wastes that being generated in massive amount, many alternatives has been taken to transform lignin into valuable products. To do so, many reactions are needed for the lignin to go through. In this study, lignin will be extracted from empty fruit bunch (EFB) with the aid of acid hydrotrope concentration of 30 % and microwave assisted with various extraction heating time and temperature. Characterization of lignin is done using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Nuclear magnetic resonance (NMR) while Scanning Electron Microscopy (SEM) and X-ray Powder Diffraction (XRD) used to characterize residues. The highest percentage of lignin yield and its purity obtained are 19.47 % and 96.63 % with the reaction time and temperature of the microwave is 30 minutes and 90 °C. From Fourier Transform Infrared Spectroscopy (FTIR), a wide band at 3430.09 cm-1 and 3413.45 cm-1 are observed due to O-H stretching vibration. As for peak at 1123.17 cm-1 and 1051.26 cm-1, it correspond to syringyl and guaicyl unit in both lignin and raw EFB. As for Thermogravimetric analysis (TGA), it shows that lignin decomposes slowly compared to raw EFB due to the aromatic structure of lignin that is very stable, therefore leading to difficulty of decomposing while from Differential Scanning Calorimetry (DSC), after removing cellulose and hemicellulose, glass transition temperature (Tg) obtained from lignin DSC spectroscopy is 193.05 °C at heat flow of 1.15 mW/mg. Next, from Nuclear magnetic resonance (NMR) spectroscopy, the signals observed around 6.5 – 8.0 ppm indicate aromatic H in syringyl and guaiacyl unit only at lignin spectra while at 3.3 – 4.0 ppm, raw EFB has an intense peak compared to lignin which attribute to methoxyl group. When the residue of the lignin as well as the raw EFB powder is characterized using X-ray Powder Diffraction (XRD), the crystallinity index of the lignin with reaction time and temperature of the microwave 30 minutes and 90 °C is the highest, 69.28 %. As a conclusion, an admissible percent of lignin yield and purity is able to be obtained with addition of acid hydrotrope depending on the variables. From the spectroscopies characterization, it is proved that lignin characteristics and properties are compatible for the production of new and value added products.


2013 ◽  
Vol 749 ◽  
pp. 125-130 ◽  
Author(s):  
Ming Hong Bian ◽  
Hui Bo Luo ◽  
Guang Bin Ye ◽  
Yan Chen ◽  
Xiao Dong Yang ◽  
...  

To extract PHAs which produced by Bacillus cereus, three methods were used in this article, such as chloroform extraction, chloroform-hypochlorite dispersion extraction and hypochlorite-surfactant extraction. Also the thermal processing performance of the materials was examined. The results showed that chloroform-hypochlorite dispersion extraction was the optimum method. The PHAs isolated had the molecular weight 5.0×105 and the extraction rate was up to 72.4%. The thermal property of these materials was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The result showed that the materials extracted by three methods were all of good thermal processing performance. The processing temperature was forecasted as 220°C.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 285
Author(s):  
Yulia S. Dyuzhikova ◽  
Anton A. Anisimov ◽  
Alexander S. Peregudov ◽  
Mikhail I. Buzin ◽  
Galina G. Nikiforova ◽  
...  

New non-crystallizable low-dispersity star-shaped polydimethylsiloxanes (PDMS) containing stereoregular cis-tetra(organo)(dimethylsiloxy)cyclotetrasiloxanes containing methyl-, tolyl- and phenyl-substituents at silicon atoms and the mixture of four stereoisomers of tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane as the cores were synthesized. Their thermal and viscous properties were studied. All synthesized compounds were characterized by a complex of physicochemical analysis methods: nuclear magnetic resonance (NMR), FT-IR spectroscopy, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), viscometry in solution, rheometry, and Langmuir trough study.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrea Pucci ◽  
Letizia Moretto ◽  
Giacomo Ruggeri ◽  
Francesco Ciardelli

AbstractA new polyethylene-compatible terthiophene chromophore, 5”-thio-(3- butyl)nonyl-2,2’:5’,2”-terthiophene, with melting point lower than 0°C was prepared and used for linear polarizers based on ultra-high-molecular-weight polyethylene (UHMWPE). Differential scanning calorimetry and scanning electron microscopy indicate that the new chromophore is dispersed uniformly in films of UHMWPE obtained by casting from solution. The films show excellent dichroic properties (dichroic ratio 30) at rather low drawing ratio (≈ 20) . Moreover, qualitative agreement is observed with the Ward pseudo-affine deformation scheme.


Sign in / Sign up

Export Citation Format

Share Document