scholarly journals Wetting behaviors of fluoroterpolymer fiber films

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 393-410
Author(s):  
Salim Ok ◽  
Julia Sheets ◽  
Susan Welch ◽  
Tingting Liu ◽  
Savas Kaya ◽  
...  

AbstractVarious aspects of electrospun fibers prepared from terpolymer of tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF) (THV)/acetone solutions at two applied voltages, THV/acetone solutions having Texas montmorillonite with two ratios, and THV/ethyl acetate solutions using two needle sizes are described. Fibers from THV/acetone and THV/ethyl acetate solutions showed shallow indentations and pores, respectively. The clay, functioning as electrospinning agent, did not influence the fiber morphology, but yielded narrower fiber diameter distribution and the thinnest fibers. Heterogeneous fiber diameter distribution and increase in the fiber diameters were observed by lowering the voltage for fibers of THV/acetone solutions. Fibers from THV/ethyl acetate solutions had the largest diameter and the broadest diameter distribution. Electrospun THV fibers having both hydrophobic characteristics with nearly 140° water contact angles and oleophilic properties with oil contact angles less than 45° might have applications in areas such as water/oil separation.

2008 ◽  
Vol 1134 ◽  
Author(s):  
Chitrabala Subramanian ◽  
Samuel C. Ugbolue ◽  
Steven B. Warner ◽  
Prabir K. Patra

AbstractElectrospinning is a technique of producing nanofibers from polymer solution/melt solely under the influence of electrostatic forces. In this research, we investigated the formation of nanofibers by melt electrospinning polycaprolactone (PCL). The effect of process parameters such as molecular weight, applied voltage, and electrode separation on the fiber diameter was investigated. Controlling the process parameters could help increase the proportion of ultrafine fibers in the melt electrospun nonwoven mat. The velocity of the straight jets was in the range of 0.2-1 m/s. The melt electrospun fibers were characterized with respect to fiber diameter, distribution, mechanical properties and birefringence. Melt electrospun polycaprolactone fibers had a diameter distribution of the order of 5 -20 μm. The birefringence of the melt electrospun fibers increased with decrease in fiber diameter.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Sarfaraz U. Patel ◽  
Gabriel M. Manzo ◽  
Shagufta U. Patel ◽  
Prashant S. Kulkarni ◽  
George G. Chase

This paper discusses the fabrication and characterization of electrospun nanofiber mats made up of poly(4-methyl-1-pentene) polymer. The polymer was electrospun in different weight concentrations. The mats were characterized by their basis weight, fiber diameter distribution, contact angles, contact angle hysteresis, and air permeability. All of the electrospun nonwoven fiber mats had water contact angles greater than 150 degrees making them superhydrophobic. The permeabilities of the mats were empirically fitted to the mat basis weight by a linear relation. The experimentally measured air permeabilities were significantly larger than the permeabilities predicted by the Kuwabara model for fibrous media.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1526 ◽  
Author(s):  
Ronaldo P. Parreño ◽  
Ying-Ling Liu ◽  
Arnel B. Beltran

This study demonstrated the processability of sulfur copolymers (SDIB) into polymer blend with polybenzoxazines (PBz) and their compatibility with the electrospinning process. Synthesis of SDIB was conducted via inverse vulcanization using elemental sulfur (S8). Polymer blends produced by simply mixing with varying concentration of SDIB (5 and 10 wt%) and fixed concentration of PBz (10 wt%) exhibited homogeneity and a single-phase structure capable of forming nanofibers. Nanofiber mats were characterized to determine the blending effect on the microstructure and final properties. Fiber diameter increased and exhibited non-uniform, broader fiber diameter distribution with increased SDIB. Microstructures of mats based on SEM images showed the occurrence of partial aggregation and conglutination with each fiber. Incorporation of SDIB were confirmed from EDX which was in agreement with the amount of SDIB relative to the sulfur peak in the spectra. Spectroscopy further confirmed that SDIB did not affect the chemistry of PBz but the presence of special interaction benefited miscibility. Two distinct glass transition temperatures of 97 °C and 280 °C indicated that new material was produced from the blend while the water contact angle of the fibers was reduced from 130° to 82° which became quite hydrophilic. Blending of SDIB with component polymer proved that its processability can be further explored for optimal spinnability of nanofibers for desired applications.


2012 ◽  
Vol 531-532 ◽  
pp. 531-534
Author(s):  
Yun Qian Cao ◽  
Qin Fei Ke ◽  
Xiang Yu Jin ◽  
Sha Sha Guo

In this paper, regenerated silk fibroin/polybutylene terephthalate blended mats were prepared using electrospinning method with different blending ratios. The influence of regenerated silk fibroin/polybutylene terephthalate ratio on the morphology behaviors, fiber diameter and the surface wettability of the blended mats were studied. The morphology of the electrospun fibers were characterized by SEM. The average fiber diameter and its distribution can be obtained from the SEM pictures using software Image J. The average fiber diameter was 280nm to 486nm and it changed with the blending ratio. The contact angles and penetration times were used to characterize the surface wettability of the nanofiber membranes. It was found that with the increase of regenerated silk fibroin amount, the surface contact angles and penetration times decreased, which meant that the wettability was greatly improved.


2005 ◽  
Vol 12 (05n06) ◽  
pp. 709-712 ◽  
Author(s):  
YIWANG CHEN ◽  
DONGMEI LIU ◽  
NING ZHANG

Controlled grafting of well-defined polymer brushes on the poly(vinylidene fluoride) (PVDF) films was carried out by the surface-initiated Atom Transfer Radical polymerization (ATRP). Surface-initiators were immobilized on the PVDF films by surface hydroxylation and esterification of the surface-tethered hydroxyl groups with 2-bromoisobutyrate bromide. Water contact angles on PVDF films were reduced by surface grafting of poly(ethylene glycol) monomethacrylate (PEGMA) and methyl methacrylate (MMA). Kinetics study revealed a linear increase in the graft concentration of PMMA and PEGMA with the reaction time, indicating that the chain growth from the surface, was consistence with a "controlled" or "living" process.


2011 ◽  
Vol 194-196 ◽  
pp. 629-632 ◽  
Author(s):  
Todsapon Nitanan ◽  
Praneet Opanasopit ◽  
Prasert Akkaramongkolporn ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat

This study focused on the preparation of electrospun polystyrene (PS) nanofibers. Polystyrene solutions were prepared in single (dimethylformamide; DMF, dimethylacetamide; DMAc or tetrahydrofuran; THF) and mixed solvent (DMF/THF and DMAc/THF) systems prior to electrospinning. The effects of solution parameters, including PS concentration and solvent system on solution properties (e.g. conductivity and viscosity), appearance and diameter of polystyrene fibers were examined. The morphology of the as-spun fibers were carefully investigated using scanning electron microscopy (SEM). It was found that the average diameter of the as-spun fibers increased upon increasing PS concentration. Moreover, the morphology of the fibers significantly depended on the properties of the solvents. The obtained fibers were smooth without any beads and their diameters depended on the amount of THF in the mixed solvent and PS concentration. In summary, the smallest diameter (927±81 nm) and the narrowest fiber diameter distribution of PS nanofibers were obtained from 15% PS solution in DMF/THF (75/25).


2016 ◽  
Vol 1 ◽  
Author(s):  
Abdul Rajak

Nanofibers membranes were synthesized using electrospinning method for air filtration application. Polyacrylonitrile (PAN) with three different concentrations as the polymeric matrix of the nanofibers membrane is used. In the aerosol filtration, the pressure drop is one of the most important parameters, which is determined by the membrane characteristics. One of the parameters that influence the characteristics of membrane is concentration of polymer solution, in which it will determine the diameter of fiber. In this study, the relation between the PAN concentration and the pressure drop in air filtration test was examined. Three different concentrations of PAN solution (6, 9, and 12 wt.%) were employed under the same process parameters of electrospinning. The fiber diameter distribution of each membrane was measured from its scanning electron microscope (SEM) image. The three concentrations resulted in significant different effect to the pressure drop that proved the existing correlation between the polymer concentration and the air pressure drop.


Sign in / Sign up

Export Citation Format

Share Document