scholarly journals Analysis of effect of modification of silica and carbon black co-filled rubber composite on mechanical properties

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 279-288
Author(s):  
Xuefei Wang ◽  
Lingling Wu ◽  
Haiwen Yu ◽  
Tongliang Xiao ◽  
Huaming Li ◽  
...  

Abstract Silica and carbon black (CB) co-filled rubber composite was widely used for tire tread and other rubber products because of combined advantages of binary fillers, such as low hysteresis, good abrasion resistance, and reinforcement. Numerous studies have been focused on the filler–rubber interaction with the aim of obtaining optimum performances. To investigate the effect of modification on properties of rubber composite, modified silica and CB co-filled rubber composite was prepared with a multi-functional silane coupling agent, 2-aminoethyl-2-(3-triethoxysilylpropyl)aminoethyl disulfide (ATD). Such modification significantly enhanced the filler–rubber interaction and improved the filler dispersion. For the modified composites, the state of cure, hardness, tensile strength before and after aging, stress at 300% elongation, tear strength, abrasion resistance, rebound resilience, compression set, temperature rise, and the value of dynamic loss coefficient ranging from −20°C to 80°C were significantly improved, especially with low ATD dosage (3.0 phr). This modification provides an effective route to prepare silica and CB co-filled rubber composites with improved mechanical properties and dynamic mechanical properties.

2017 ◽  
Vol 90 (4) ◽  
pp. 611-620
Author(s):  
An Dong ◽  
Zhang Zhiyi ◽  
Jia Haixiang ◽  
Shou Jinquan ◽  
Zhang Huan ◽  
...  

ABSTRACT The influence of the structure and size of carbon black on the static mechanical and dynamic mechanical properties of filled natural rubber (NR) compounds is investigated in detail. A new process for the production of carbon black master batches with enhanced mechanical properties has been developed. The unit operations in the process are the preparation of carbon black slurry in the presence of a suitable surfactant, addition of the slurry to the fresh NR latex under stirring, coagulation of the mixture by the addition of acid, dewatering of the coagulum, and drying to obtain carbon black–incorporated NR. The competence of the new technique is established by comparing the characteristics of the carbon black–incorporated NR by the mill mixing process (control). The mechanical properties, including tensile strength, modulus, tear strength, and hardness, are superior for the vulcanization prepared by the latex-suspension coagulation techniques. The improvement shown by the vulcanization prepared by the latex-suspension coagulation techniques was attributed to the better filler dispersion evidenced from the scanning electron micrograph along with the attainment of a higher level of vulcanization.


1996 ◽  
Vol 69 (1) ◽  
pp. 15-47 ◽  
Author(s):  
J. D. Ulmer

Abstract The strain dependencies of dynamic mechanical properties of carbon black-filled rubber compounds have been modeled by Kraus. Evaluation of the Kraus model with carbon black loadings up to 110 phr shows that it provides a fairly good overall description of elastic modulus, G′, as a function of strain, γ. The model description of G′ strain dependence improves with decreased carbon black loading, and is very good with carbon black loadings of 50 phr and less. The model description of viscous modulus strain dependence, G″(γ), is less successful than the G′(γ) description. Several empirical modifications of the viscous modulus model are examined. The most improved model is a very good approximation to viscous modulus over a wide experimental strain-range. Its utility, and that of the Kraus G′(γ) model, are illustrated through calculation of simple shear dynamic properties from torsion property measurements on a solid cylinder, where the strain amplitude varies across the specimen radius. The models allow transformation of the apparent moduli, reported as functions of strain amplitude at the cylinder's outer edge, to their true counterparts, G′(γ) and G″(γ), as functions of uniform strain amplitude. Although the G′(γ) and modified G″(γ) models apply to a wide range of experimental strains, some uncertainties associated with each model's accuracy remain, and there are inconsistencies in the relation of one model to the other. Reservations associated with the models might be resolved through refined treatments of the test specimen geometries.


2014 ◽  
Vol 87 (2) ◽  
pp. 250-263 ◽  
Author(s):  
Sasidharan Krishnan ◽  
Rosamma Alex ◽  
Thomas Kurian

ABSTRACT A process for production of carbon black/silica/nanoclay ternary filler masterbatch from fresh natural rubber (NR) latex was standardized. The fillers, nanoclay, carbon black, and silica were incorporated in fresh NR latex by a modified coagulation process. The latex, mixed with filler dispersions, coagulated immediately on addition of acids. The coagulum containing fillers was dried at 70 °C in an air oven to get the latex filler masterbatch, which was further processed in the conventional way. The masterbatch compounds containing only silica/carbon black showed a higher level of vulcanization as compared with the corresponding dry mixes. The mechanical properties, such as tensile strength, modulus, tear strength, abrasion resistance, and hardness, increased with the proportion of nanoclay in the mixes up to 5 phr, and with a greater amount, the change was only marginal. Lower tan delta values were observed for all of the masterbatches containing nanoclay in the ranges of 3 to 10 phr compared with the control dry mix containing 25/25 carbon black/silica. The improvement in mechanical properties and dynamic properties shown by the masterbatches over the conventional mill-mixed compounds was attributed to factors related to filler dispersion, as evidenced from the data from dispersion analyzer images, X-ray diffractograms, and a higher level of vulcanization.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1983 ◽  
Author(s):  
Wei Liu ◽  
Lutao Lv ◽  
Zonglin Yang ◽  
Yuqing Zheng ◽  
Hui Wang

In this study, the filled natural rubber (NR) was prepared with organic montmorillonite (OMMT) and carbon black (CB). The effects of the amount of OMMT on the properties of CB/NR composites were investigated by measuring the physical and mechanical properties, compression set and compression heat properties, processing properties and damping properties. The formulation was optimized depending on the different conditions of end applications and the damping properties of rubber were maximized without affecting the other properties of the rubber. The results showed that the rubber composite system filled with 2 phr (parts per hundreds of rubber) OMMT had better mechanical properties and excellent damping performance.


2021 ◽  
Vol 39 (4) ◽  
pp. 1142-1149
Author(s):  
A.C. Ezika ◽  
V.U. Okpechi

Effects of chemically treated and carbonized spear grass fibre on the curing and mechanical properties of natural rubber vulcanizates were carried out. Natural rubber (NR) was filled with carbonized (at carbonization temperatures of 400°C, 600°C and 800°C  respectively) and chemically treated (treatment with HCl and NaOH of 5% concentration) spear grass fillers respectively, at a filler loading of 30phr. The rubber compounding was carried out in a bambury mixer. The effect of carbonization temperature and chemical treatment of the filler on the mechanical properties (tensile strength, % elongation, hardness strength, abrasion resistance and compression set) and rheological properties (cure time, scorch time, maximum and minimum torque) were carried out on the  samples. The results of the mechanical properties of carbonized spear grass fibre (C-SGF) filled vulcanizates show that the optimum carbonization temperature for an improved tensile strength, % elongation, hardness, abrasion and compression set was obtained at 400°C. NaOH treated fibre filled vulcanizates showed better mechanical properties; with the highest abrasion resistance of 67.65%, while untreated and acidified fibre filled vulcanizates showed poor mechanical properties. Acidified (HCl) uncarbonized spear grass fibre (U-SGF) filled vulcanizate had the highest compression set of 48% against C-SGF filled vulcanzates and carbon black filled  vulcanizate, with carbon black filled vulcanizate having 47% as its compression set value. This reveals that at a carbonization temperature of 400°C, C-SGF appears to be a potential substitute filler for carbon black (CB). Keywords: Spear Grass Fibre, Natural Rubber, Chemical Treatments, Cure Characteristics, Mechanical Properties, Carbonization


2013 ◽  
Vol 753-755 ◽  
pp. 2379-2382
Author(s):  
Shi Meng Xu ◽  
Run Bo Ma ◽  
Jian Hua Du ◽  
Jun Hong Liu ◽  
Qi Jin

Filled the N330 carbon black, silica T80 carbon black and Al powder and Fe2O3 magnetic nanoparticles, the rubber composites on multi-component electromagnetic fillers were prepared according to orthogonal experiment analysis, and the preliminary experiment conclusions of the filler prescription designs were given; Based on the experiment design, the mechanical properties and thermal conductivity of the rubber composite were tested, and the testing results were analyzed by using variance analysis. Thus, the paper shows that the effects of N330 on rubber mechanical properties are significant, and the effects of Al powder on the rubber thermal conductivity are significant. Moreover, it is highly emphasized in this paper that the orthogonal experiment design must be carefully explored before the tests are executed.


1995 ◽  
Vol 68 (2) ◽  
pp. 259-266 ◽  
Author(s):  
C. A. Sierra ◽  
C. Galán ◽  
J. M. Gómez Fatou ◽  
V. Ruíz Santa Quiteria

Abstract The interaction between rubber and carbon black in compounds for road tire treads has been analyzed by using mechanical and dynamical measurements in three cured compounds based on SBRs. The rubbers were prepared in solution by anionic polymerization, and coupled with tin compounds in which the carbon-tin bond at the end of the chain may correspond to styryl or butadienyl terminations. The interaction parameter, defined by the ratio of mechanical and dynamic terms, has been used for the first time for the evaluation of the compounds. The SBRs with tin-butadienyl bonds exhibit an improved interaction with the filler, with increasing tin content.


Sign in / Sign up

Export Citation Format

Share Document