scholarly journals Effects of chemically treated and carbonized spear grass fibre on the curing and mechanical properties of natural rubber vulcanizates

2021 ◽  
Vol 39 (4) ◽  
pp. 1142-1149
Author(s):  
A.C. Ezika ◽  
V.U. Okpechi

Effects of chemically treated and carbonized spear grass fibre on the curing and mechanical properties of natural rubber vulcanizates were carried out. Natural rubber (NR) was filled with carbonized (at carbonization temperatures of 400°C, 600°C and 800°C  respectively) and chemically treated (treatment with HCl and NaOH of 5% concentration) spear grass fillers respectively, at a filler loading of 30phr. The rubber compounding was carried out in a bambury mixer. The effect of carbonization temperature and chemical treatment of the filler on the mechanical properties (tensile strength, % elongation, hardness strength, abrasion resistance and compression set) and rheological properties (cure time, scorch time, maximum and minimum torque) were carried out on the  samples. The results of the mechanical properties of carbonized spear grass fibre (C-SGF) filled vulcanizates show that the optimum carbonization temperature for an improved tensile strength, % elongation, hardness, abrasion and compression set was obtained at 400°C. NaOH treated fibre filled vulcanizates showed better mechanical properties; with the highest abrasion resistance of 67.65%, while untreated and acidified fibre filled vulcanizates showed poor mechanical properties. Acidified (HCl) uncarbonized spear grass fibre (U-SGF) filled vulcanizate had the highest compression set of 48% against C-SGF filled vulcanzates and carbon black filled  vulcanizate, with carbon black filled vulcanizate having 47% as its compression set value. This reveals that at a carbonization temperature of 400°C, C-SGF appears to be a potential substitute filler for carbon black (CB). Keywords: Spear Grass Fibre, Natural Rubber, Chemical Treatments, Cure Characteristics, Mechanical Properties, Carbonization

2014 ◽  
Vol 87 (2) ◽  
pp. 250-263 ◽  
Author(s):  
Sasidharan Krishnan ◽  
Rosamma Alex ◽  
Thomas Kurian

ABSTRACT A process for production of carbon black/silica/nanoclay ternary filler masterbatch from fresh natural rubber (NR) latex was standardized. The fillers, nanoclay, carbon black, and silica were incorporated in fresh NR latex by a modified coagulation process. The latex, mixed with filler dispersions, coagulated immediately on addition of acids. The coagulum containing fillers was dried at 70 °C in an air oven to get the latex filler masterbatch, which was further processed in the conventional way. The masterbatch compounds containing only silica/carbon black showed a higher level of vulcanization as compared with the corresponding dry mixes. The mechanical properties, such as tensile strength, modulus, tear strength, abrasion resistance, and hardness, increased with the proportion of nanoclay in the mixes up to 5 phr, and with a greater amount, the change was only marginal. Lower tan delta values were observed for all of the masterbatches containing nanoclay in the ranges of 3 to 10 phr compared with the control dry mix containing 25/25 carbon black/silica. The improvement in mechanical properties and dynamic properties shown by the masterbatches over the conventional mill-mixed compounds was attributed to factors related to filler dispersion, as evidenced from the data from dispersion analyzer images, X-ray diffractograms, and a higher level of vulcanization.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dosu Malomo ◽  
Abdulhakeem D Olasupo ◽  
Abayomi M Adesigbin ◽  
Owen Egharevba ◽  
Sulaiman O Adewuyi ◽  
...  

Palm kernel shell was activated using chemical activation of H3PO4 and KOH. Various amounts of activated palm kernel shell (APKS) couple with carbon black (CB) and other conventional ingredients were used to produce natural rubber vulcanizates (NR vulcanizates). The NR vulcanizates were compounded on a two-row mill and tested for its physico-mechanical properties. The results for characterization of physicochemical properties carried out on APKS  were ash content (2.06%), moisture content (8.06%), %carbon (54.41%), particle size (4.00, 3.35, 2.00, 1.18mm), bulk density (0.62g/ml) and pH (5.3).The results show significant values for all, the moisture and ash content were within the recommended standard of ASTM (3-10max) and (< or =8) respectively. The filler loading concentrations CB/APKS were labeled as mixes 1 to 7. The composition of CB/APKS filler loading ratios were 30:0, 25:5, 20:10, 15:15, 10:20, 5:25, and 0:30 samples 1,2,3,4,5,6 and 7 respectively. Results obtained showed that CB/APKS filled vulcanizates exhibited improvement in the physico-mechanical properties investigated. The results obtained for CB/APKS across the samples filler loading shows that CB composition possess higher UTS, EB and rubber fatigue test while APKS filler loading composition exhibited higher hardness and young modulus. Abrasion resistance was excellent for both CB and APKS filler loading composition.Keywords: Activated Palm Kernel Shell, filler, carbon black, Chemical Activation, Natural Rubber.


2017 ◽  
Vol 751 ◽  
pp. 332-336 ◽  
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to investigate the possibility of pyrolytic carbon black (PCB) used as filler in natural rubber (NR) and its effect on Mooney viscosity, cure characteristics and mechanical properties compared with commercial carbon black (N774). The results revealed that Mooney viscosity, stiffness and heat build-up tended to increase with increasing both PCB and N774 loading, whereas elongation at break decreased. However, the maximum tensile and tear strengths appeared at the optimum filler loading for both PCB and N774. At similar filler content, PCB-filled NR compounds have higher cure time, heat build-up and thermal resistance. Nevertheless, they exhibited lower Mooney viscosity and mechanical properties compared to N774-filled NR. Finally, it can be concluded that PCB could be utilized as filler in NR compound to act as semi-reinforcing filler and was classified as a filler to reduce costs.


2020 ◽  
Vol 11 (1) ◽  
pp. 43-51
Author(s):  
Wisdom Okechukwu Egbujuo ◽  
Placid Ikechukwu Anyanwu ◽  
Henry Chinedu Obasi

AbstractNatural rubber (NR) vulcanizates were prepared from natural rubber and chitin using a two-roll mill. The chitin was extracted from crab shell waste obtained from a local market in Oron, Akwa Ibom State, Nigeria using the chemical extraction method. The effects of the chitin at different contents (0–40 phr) on the mechanical properties of the NR/Chitin vulcanizates with carbon black as reference filler have been investigated. The tensile strength of the chitin filled natural rubber (NCH), and the carbon black filled natural rubber (NCB) vulcanizates were found to increase with an increase in filler content to reach optimum at 30 phr after which it decreased. The hardness, impact and abrasion resistance properties of the NCH and NCB vulcanizates increased as filler content increases. The tensile strength and abrasion resistance of the vulcanizates containing blends of varying percentages of carbon black to chitin (CBCH) increased as more carbon black (CB) is introduced while the hardness and impact strength increased with increase in chitin content. However, carbon black filled vulcanizates showed better property enhancement than the chitin filler.


Author(s):  
Akinlabi Oyetunji ◽  
Isiaka O Bakare ◽  
Reginald Umunakwe ◽  
Adetola O Adeyemo

This work investigates the effects of addition of 63 µm uncarbonized particulate cow bone as fillers in vulcanized natural rubber on the tensile properties, hardness and abrasion resistance of the composites. Cow bones were procured from an abattoir, cleaned, crushed, pulverized, ball milled and sieved to obtain the particles that passed through the 63 µm mesh size. Natural rubber composites materials were prepared varying the filler loading as 5, 10, 15 and 20 pphr respectively. The compounded rubber samples were cured in a hot press using compression moulding technique. The control sample was produced using 20 pphr of carbon black. The cured rubber samples were conditioned at room temperature for two weeks before they were characterized. The tensile strength and elastic modulus of the samples filled with cow bone increased with filler loading up to 15 pphr before they started decreasing. Carbon black reinforced sample possessed higher tensile strength, modulus and hardness than the samples filled with uncarbonized particulate cow bone. The hardness for all samples maintained an increasing trend with increase in the filler loadings. Particulate cow bone reinforced natural rubber offered higher elongation than carbon black reinforced samples. At 10, 15 and 20 pphr, cow bone reinforced composites exhibited higher abrasion resistance than carbon black filled sample. The optimal filler loading of uncarbonized particulate cow bone reinforced natural rubber was 15 pphr.  Cow bone reinforced natural rubber can find applications in areas where moderate strength, hardness, elongation and wear resistance are required such as in protective footwear, bouncing balls and cases of children toys.Keywords— carbon black, cow bone, fillers, natural rubber, composites.


2021 ◽  
Vol 19 (3) ◽  
pp. 194-201
Author(s):  
H. Boukfessa ◽  
B. Bezzazi

The present work investigates the effect of the amount of carbon black on curing and mechanical properties such as tensile strength, elongation at break, hardness and abrasion resistance of the natural rubber (NR)/ acrylonitrile-butadiene rubber (NBR) blend. For that purpose, a blend composed of 65% NR and 35% NBR filled with different content of carbon black N330 was used. The curing results indicate that the viscosity and the crosslink density of rubber composites increase and the scorch and curing times decrease with increasing the filler content. Mechanical properties such as tensile modulus and hardness of the CB filled NR/NBR blend were remarkably improved, indicating the inherent reinforcing potential of CB. Regarding tensile strength and abrasion resistance, they increase with the addition of carbon black, up to 50 phr. After that, these properties decrease slightly with filleraddition.


2017 ◽  
Vol 735 ◽  
pp. 153-157
Author(s):  
Wasinee Pinpat ◽  
Wirunya Keawwattana ◽  
Siree Tangbunsuk

Silica has been used as reinforcing filler in natural rubber for a period of time as it results in excellent properties for NR vulcanizes. Rice husk ash (RHA), bagasse ash (BA), and oil palm ash (OPA) obtained from agricultural wastes are mainly composed of silica in the percentage of 80.00%, 57.33%, and 40.20% by weight, respectively. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at fixed silica content at 35 parts per hundred of rubber (phr) were investigated. The results indicated that ashes showed greater cure time compared to that of the silica. The incorporation of ashes into natural rubber gradually improved compression set but significantly decreased tensile strength, elongation at break, and resilience. Moreover, young's modulus increased, while hardness showed no significant change with the addition of ashes. Overall results indicated that ashes could be used as cheaper fillers for natural rubber materials where improved mechanical properties were not critical.


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2021 ◽  
Author(s):  
Dalal Alshangiti

Abstract A series of natural rubber/ butyl rubber NR/IIR blend loaded with N660 carbon black CB and triethoxy vinyl silane treated clay nano particles (TCNP) were prepared using gamma irradiation in the presence of polyfunctional monomer, trimethylolpropane triacrylate (TMPTA). The effect of incorporating different content of N660 carbon black and 5 part per hundred of rubber (phr) of treated clay on the mechanical properties of the prepared nano composites have been investigated. The additions of TCNP into CB/ rubber composites markedly increase their tensile strength due to the increase of the cross-link density. These results indicated that the TCNP may be enclosed or trapped in the occluded structure of CB. The effect of CB and TCNP content on the tensile strength (σ), elongation at break (εb %) and modulus of elasticity (E, MPa) of natural rubber/ butyl rubber NR/IIR blend have been investigated. The incorporation of 5 phr of TCNP into 30 phr carbon black loaded NR/ IIR composites results in the increased tensile strength value by about 60%. Finally, theoretical models were used to interpret the experimental results.


Sign in / Sign up

Export Citation Format

Share Document