Synthesis and characterization of 4-chloromethylstyrene polymers containing bulky organosilicon groups

e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Kazem Dindar Safa ◽  
Mirzaagha Babazadeh

Abstract The homopolymer of 4-chloromethylstyrene and its copolymers with styrene (in 1:3 and 1:1 mole ratio) were synthesized by bulk and solution freeradical polymerisations, respectively, at 70±1°C using α,α'-azoisobutyronitrile as an initiator. Highly sterically hindered tris(trimethylsilyl)methyl (Tsi) substituents were then covalently linked to the obtained homopolymer and copolymers. The polymers were characterized by IR, 1H NMR and 13C NMR, differential scanning calorimetry (DSC) and gel permeation chromatography. DSC showed that incorporation of Tsi substituents in the side chains of homopolymer and copolymers increases the rigidity of the polymers and, subsequently, their glass transition temperature.

e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Xifei Yu ◽  
Guo Zhang ◽  
Tongfei Shi ◽  
P.K. Dutta ◽  
Lijia An

AbstractThe functional polystyrene, (Cl-PS)2-CHCOOCH2CH2OH (designated as XPSt and coded P2) was prepared by ATRP at 1300C using CuCl and bipyridine as catalysts, 2,2-dichloro acetate-ethylene glycol (DCAG) as multifunctional initiator and THF as solvent. 4-Nitoroaniline azomethine-4’ phenol (P1) as chromophores were covalently linked to the functional end groups of the polymer by using simple displacement reaction. The functional polystyrenes, namely XPSt (P2) and (PS)2-CHCOOCH2CH2OH, designated as X-PSt and coded P3 and their post-derivatives, namely, DXPSt (P4) and DX-PSt (P5) respectively were characterized by IR, NMR and UV spectroscopies, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), polarising optical microscopy (POM) and XRD studies. DSC showed that incorporation of chromophores in the side chains of polymers towards the polystyrene moiety increases the rigidity of the polymer and subsequently, its glass transition temperature; however the incorporation of side chain towards the alcoholic functional group decreases the glass transition temperature. The post derivatives do not play any significant role to increase the thermal stability (TGA). There was evidence for liquid crystalline properties in the resulting polymer derivative DXPSt (P4) as observed from POM study, which defines the alignment of chromophores into the polymers. The XRD study shows crystalline behaviour of the polymer derivative, P4. The polymer derivative, DXPSt (P5) does not show such behaviour and this may be due to the bonding of azomethine towards the short chain alcoholic telechelic alcoholic sides of the copolymer.


2013 ◽  
Vol 9 ◽  
pp. 647-654 ◽  
Author(s):  
Astrid Hoppe ◽  
Faten Sadaka ◽  
Claire-Hélène Brachais ◽  
Gilles Boni ◽  
Jean-Pierre Couvercelle ◽  
...  

The ring-opening polymerization of ε-caprolactone (ε-CL) and rac-lactide (rac-LA) under solvent-free conditions and using 1-n-butyl-3-methylimidazolium-2-carboxylate (BMIM-2-CO2) as precatalyst is described. Linear and star-branched polyesters were synthesized by successive use of benzyl alcohol, ethylene glycol, glycerol and pentaerythritol as initiator alcohols, and the products were fully characterized by 1H and 13C{1H} NMR spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). BMIM-2-CO2 acts as an N-heterocyclic carbene precursor, resulting from in situ decarboxylation, either by heating under vacuo (method A) or by addition of NaBPh4 (method B). Possible catalytic and deactivation mechanisms are proposed.


2013 ◽  
Vol 641-642 ◽  
pp. 201-205
Author(s):  
Hong Su ◽  
Li Mei Guo ◽  
Lian Yong Wang

polycaprolactone diols (MW=540, 1000, 2000) and citric acid were used as monomers, polycaprolactone-citric acid preformed polymer was preparated firstly by the heating polycondensation, then the preformed polymer was heated and cross-linked to obtain biodegradable elastomeric material. The molecular structure and Molecular weight was proved respectively by 1-HNMR and Gel Permeation Chromatography (GPC). The shape and glass transition temperature (Tg) of polycaprolactone-citric acid polymer was certified by differential scanning calorimetry(DSC). The hydrophilicity of the polymer was evaluated by its contact angle. The polymer’s mechanical property and degradation speed was also investigated.


2017 ◽  
Vol 30 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Shuaishuai Liu ◽  
Quan Zhou ◽  
Zhengqiang Peng ◽  
Ning Song ◽  
Lizhong Ni

A silicon-containing polymer (HMSA), synthesized with n-BuLi, trichloroethylene, dichloromethylsilane, and dimethyldichlorosilane, with three different proportions of Si–H, and its influence on thermal oxidation have been studied. The structures of HMSA were characterized by Fourier transform infrared spectra, 1H-Nuclear Magnetic Resonance (H-NMR), 13C-NMR, 29Si-NMR, and gel permeation chromatography. Thermal and oxidative stabilities were studied by differential scanning calorimetry and thermogravimetric analysis, and the cross-linking reaction mechanisms of the HMSA were discussed. All the polymers exhibited excellent thermal and oxidation resistance; particularly, HMSA-1 showed high heat-resistant and thermo-oxidative stability; the temperatures of 5% weight loss ( Td5) were 636.3 and 645.5°C, and the residues at 1000°C were 87.07 and 86.23% in nitrogen and air, respectively. This system had excellent thermal and oxidative stability, and through the structure design, control of heat oxidation resistance was realized.


2003 ◽  
Vol 15 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Carmen Racles ◽  
Vasile Cozan ◽  
Maria Cazacu

New siloxane-containing polyesters with arylidene mesogenic moieties were prepared by copolycondensation reactions between bis(hydroxybuthyl)siloxanes, 2,6-bis(4-hydroxybenzylidene)cyclohexanone, and diacid chlorides such as sebacoyl and terephthaloyl. The polymer structure was confirmed by IR and 1H-NMR spectroscopy. They were characterized by gel permeation chromatography and ultraviolet analyses. The thermotropic liquid crystalline behavior was investigated by differential scanning calorimetry and polarized optical microscopy.


2013 ◽  
Vol 785-786 ◽  
pp. 656-659
Author(s):  
Teng Fei Shen ◽  
Ying Juan Sun

In this work, a series of novel bipolar copolymers containing 8-hydroxyquinoline aluminum (Alq3) and carbazole had been synthesized by copolymerization of a novel Alq3 complex monomer and N-vinylcarbazole (NVK), and characterized by Fourier transform infrared spectra (FTIR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Emerson C. G. Campos ◽  
Cristiano Zanlorenzi ◽  
Bruno F. Nowacki ◽  
Gabriela M. Miranda ◽  
Denis A. Turchetti ◽  
...  

This work reports the synthesis and characterization of a conjugated polymer based on fluorene and terpyridine, namely, poly[(9,9-bis(3-((S)-2-methylbutylpropanoate))fluorene-alt-6,6′-(2,2′:6′,2′′-terpyridin-6-yl)] (LaPPS71). The structure was characterized by 1H and 13C nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy. The molar mass was measured by gel permeation chromatography (GPC). As thermal characterization, the glass transition temperature (Tg) was measured by differential scanning calorimetry (DSC). The polymer structure contains two sites capable of complexation with metallic ions, affording the possibility of obtainment of independent or electronically coupled properties, depending on the complexation site. The photophysical properties were fully explored in solution and solid state, presenting ideal results for the preparation of various metallopolymers, in addition to potential application as a metamaterial, due to the presence of the chiral center in the side chains of the polymer.


2015 ◽  
Vol 87 (11-12) ◽  
pp. 1085-1097 ◽  
Author(s):  
Li Wang ◽  
Stefan Baudis ◽  
Karl Kratz ◽  
Andreas Lendlein

AbstractA versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)2 as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto- and thermo-sensitive polymer networks were prepared via two subsequent surface-initiated ring-opening polymerizations (ROPs) with ω-pentadecalactone and ε-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85°C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and 1H-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(ω-pentadecalactone) (OPDL) and oligo(ε-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few ω-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)2 was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4653
Author(s):  
Jakub Herman ◽  
Piotr Harmata ◽  
Michał Czerwiński ◽  
Olga Strzeżysz ◽  
Marta Pytlarczyk ◽  
...  

The synthesis and characterization of new deuterated liquid crystal (LC) compounds based on phenyl tolane core is described in this paper. The work presents an alternative molecular approach to the conventional LC design. Correlations between molecular structure and mesomorphic and optical properties for compounds which are alkyl-hydrogen terminated and alkyl-deuterium, have been drawn. The compounds are characterized by mass spectrometry (electron ionization) analysis and infrared spectroscopy. They show enantiotropic nematic behavior in a broad temperature range, confirmed by a polarizing thermomicroscopy and differential scanning calorimetry. Detailed synthetic procedures are attached. Synthesized compounds show a significantly reduced absorption in the near-infrared (NIR) and medium-wavelength infrared (MWIR) radiation range, and stand as promising components of medium to highly birefringent liquid crystalline mixtures.


Sign in / Sign up

Export Citation Format

Share Document