scholarly journals Projected effects of climate change on the carbon stocks of European beech (Fagus sylvatica L.) forests in Zala County, Hungary

2016 ◽  
Vol 62 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Zoltán Somogyi

Abstract Recent studies suggest that climate change will lead to the local extinction of many tree species from large areas during this century, affecting the functioning and ecosystem services of many forests. This study reports on projected carbon losses due to the assumed local climate change-driven extinction of European beech (Fagus sylvatica L.) from Zala County, South-Western Hungary, where the species grows at the xeric limit of its distribution. The losses were calculated as a difference between carbon stocks in climate change scenarios assuming an exponentially increasing forest decline over time, and those in a baseline scenario assuming no climate change. In the climate change scenarios, three different sets of forest management adaptation measures were studied: (1) only harvesting damaged stands, (2) additionally salvaging dead trees that died due to climate change, and (3) replacing, at an increasing rate over time, beech with sessile oak (Quercus petraea Matt. Lieb.) after final harvest. Projections were made using the open access carbon accounting model CASMOFOR based on modeling or assuming effects of climate change on mortality, tree growth, root-to-shoot ratio and decomposition rates. Results demonstrate that, if beech disappears from the region as projected by the end of the century, over 80% of above-ground biomass carbon, and over 60% of the carbon stocks of all pools (excluding soils) of the forests will be lost by 2100. Such emission rates on large areas may have a discernible positive feedback on climate change, and can only partially be offset by the forest management adaptation measures.

2015 ◽  
Vol 27 (1-2) ◽  
pp. 25-33
Author(s):  
I. I. Kozak ◽  
T. V. Parpan ◽  
G. G. Kozak ◽  
P. G. Kotsyuba

The study concerned forecasts for the dynamics of beech (Fagus sylvatica L.) stands in the Polish Bieszczady and Ukrainian Beskydy with the use of FORKOME model іn different scenarios of climate changes. Simulation conducted in FORKOME model confirms that beech will exist in the Polish Bieszczady and Ukrainian Beskydy regions on the east boundary of beech areal. The changes in the Polish Bieszczady and Ukrainian Beskydy can be estimate as a positive for forest productivity and biomass accumulations. They were confirmed by fieldwork and events documented in the literature, which shows the reliability of the forecasts used FORKOME computer model. Work and study of this kind are necessary for rational forest management and to take appropriate development strategies.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 584
Author(s):  
Carlotta Ferrara ◽  
Maurizio Marchi ◽  
Gianfranco Fabbio ◽  
Silvano Fares ◽  
Giada Bertini ◽  
...  

The European beech (Fagus sylvatica L.) is a widely distributed tree species across Europe, highly sensitive to climate change and global warming. This study illustrates results of a 5-year monitoring time period from eight sites of the ICP-Forests Level II (intensive monitoring network) along the Italian latitudinal gradient. The tree-level relationship between tree growth dynamics and environmental factors, including seasonal climate fluctuations were investigated by means of tree-level Generalized Additive Mixed Models (GAMMs). Model results revealed that climate was responsible for just a portion of the variability in beech growth dynamics. Even if climatic predictors were highly significant in almost all sites, the model explained nearly 30% of the total variance (with just a maximum value of 71.6%), leaving the remaining variance unexplained and likely connected with forest management trajectories applied to each site (e.g., aged coppice and fully grown high forest). Climate change scenarios were then applied to predict site-specific future responses. By applying climate change scenarios, it was predicted that central and northern Italy would face similar climatic conditions to those currently detected at southern latitudes. A special case study was represented by VEN1 plot (Veneto, Northern Italy) whose current and future climate regimes were grouped in a unique and separated cluster.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.


Ecosystems ◽  
2021 ◽  
Author(s):  
Laura Marqués ◽  
Drew M. P. Peltier ◽  
J. Julio Camarero ◽  
Miguel A. Zavala ◽  
Jaime Madrigal-González ◽  
...  

AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.


2019 ◽  
Vol 10 ◽  
Author(s):  
Lazar Pavlović ◽  
Dejan Stojanović ◽  
Emina Mladenović ◽  
Milena Lakićević ◽  
Saša Orlović

Sign in / Sign up

Export Citation Format

Share Document