Compact Dual-Band Bandpass Filter Using Stubs Loaded Ring Resonator

Frequenz ◽  
2016 ◽  
Vol 70 (1-2) ◽  
Author(s):  
Jin Xu

AbstractThis paper presents a novel second-order dual-band bandpass filter (BPF) by using proposed stubs loaded ring resonator. The resonant behavior of proposed stubs loaded ring resonator is analyzed by even-/odd-mode method, which shows its multiple-mode resonant characteristic. Parameters sweep is done so as to give the design guidelines. As an example, a second-order dual-band BPF operating at 1.8/5.2 GHz for GSM and WLAN applications is designed, fabricated and measured. The fabricated filter has a very compact size of 0.05λg×0.15λg. Measured results also show that the proposed dual-band BPF has a better than 20 dB rejection upper stopband from 5.47 GHz to 12.56 GHz. Good agreement is shown between the simulated and measured results.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Karthie S. ◽  
Zuvairiya Parveen J. ◽  
Yogeshwari D. ◽  
Venkadeshwari E.

Purpose The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications. Design/methodology/approach In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF. Findings The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works. Originality/value In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Haiwen Liu ◽  
Baoping Ren ◽  
Xiang Xiao ◽  
Zhichong Zhang ◽  
Shen Li ◽  
...  

A miniaturized bandpass filter (BPF) using defected ground structure (DGS) resonator with the characteristic of harmonic rejection is developed in this paper. The second and third harmonics of the proposed BPF are rejected by the characteristic of stepped-impedance DGS resonator. Moreover, open stubs are established so that two adjustable transmission zeros can independently be created to extend the stopband and improve the rejection level. Finally, a second-order BPF, centered at 1.62 GHz with a stopband extended up to 5.6 GHz and a rejection level better than 20 dB, is designed and implemented for GPS application. A good agreement between simulation and measurement verifies the validity of this design methodology.


Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 53-59
Author(s):  
Qingchun Cao ◽  
Hui Liu ◽  
Li Gao

AbstractThis paper presents a compact quad-band bandpass filter. The filter is realized by multi-embedded stub-load resonators. By utilizing multi-embedded structure, the whole filter exhibits a compact size. And due to the multi-section stub-loaded lines, four passbands can be realized and the center frequency of the four passbands can be controlled individually to accommodate different communication protocols. Moreover, by using 0° degree feed structure, there are two transmission zeros locates at left and right side of a passband, which greatly enhance the selectivity. To validate the proposed idea, a quad-band bandpass filter, which operates at 2/2.7/3.45/4.55 GHz is implemented. The insertion loss is smaller than 2 dB and return loss is better than 10 dB. Good agreement between the predicted and measured results demonstrates the proposed idea.


2014 ◽  
Vol 7 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Mushtaq Alqaisy ◽  
Chandan Chakrabraty ◽  
Jawad Ali ◽  
Adam R.H. Alhawari

In this paper, a fractal-based complementary split-ring resonator (CSRR) has been introduced as a defected ground structure (DGS) in the ground plane of a dual-mode microstrip bandpass filter to produce a new compact filter with dual-band response. The conventional double square ring resonator structure is modified such that its inner ring is made with a fractal shape instead of a square. Measured and simulation results show that the resulting filter offers a dual passband response; the higher passband is attributed to the dual-mode microstrip ring structure, whereas the lower passband is as a result of the embedded CSRR DGS structure. In addition, the results show that the position of the lower passband could be varied, to a certain extent, without affecting the position of the higher passband by applying higher fractal iteration levels to the inner split ring. These features, together with the compact size the proposed filter offers, make it suitable for use in a wide variety of dual-band communication applications. Measured results, carried out on filter prototypes, have been found in agreement with those theoretically predicted.


Frequenz ◽  
2016 ◽  
Vol 70 (5-6) ◽  
Author(s):  
Jin Xu

AbstractIn this paper, a novel second-order tri-band bandpass filter (BPF) is presented by using the first three modes of stubs loaded stepped-impedance resonators (SIRs). The resonant behavior of proposed stubs loaded SIR is analyzed by even-/odd-mode method and parameters sweep, which shows its controllable first three resonant modes. As an example, a second-order tri-band BPF operating at 3.5/5.2/5.8 GHz for WiMax and WLAN applications is designed, fabricated and measured. The fabricated filter has a compact size of 0.21λ


2011 ◽  
Vol 130-134 ◽  
pp. 3255-3258
Author(s):  
Yun Xiu Wang

A novel dual-mode bandpass filter using defected microstrip structure with distributed capacitance loading inside the free area of a defected microstrip dual-mode loop resonator is proposed in this paper. The filter has the advantages of compact size together with sharp rejection of out-bands and a wide stop-band. The measured results show that better than 20dB rejection levels in the stop-band up to 4.25 GHz have been obtained. It has been validated by simulation and experiment. The simulated results are compared with measured data and a good agreement is achieved.


Frequenz ◽  
2019 ◽  
Vol 73 (5-6) ◽  
pp. 203-208
Author(s):  
Lei Chen ◽  
Qin Kun Xiao ◽  
Yan Ni Gan

Abstract A balanced dual-band bandpass filter (BPF) is proposed by embedding two nested coupled complementary split-ring resonators (C-CSRRs) into a H-type balanced stepped-impedance slotline resonator in this paper. C-CSRR is composed of a complementary split-ring resonator (CSRR) with a pair of coupling slotlines in the open end, which can generate a bandpass response. In order to improve the passband selectivity further, source-load-coupled structure is employed. Moreover, it can be found that the proposed BPF has a wideband common-mode (CM) suppression, which is independent from the differential-mode (DM) passbands. Therefore, the design procedure can be significantly simplified. In order to validate its practicalbility, one balanced dual-band BPF is fabricated. The predicted results on S parameters are compared with the measured ones and a good agreement is found.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750163 ◽  
Author(s):  
Mohammad Babajanzadeh ◽  
Massoud Dousti

Design, fabrication and measurement of a high-selectivity dual-mode dual-band bandpass filter are presented in this paper. The resonance frequencies of the filter are 1.8[Formula: see text]GHz and 2.4[Formula: see text]GHz which are generated by a meander-loop resonator and a square-loop resonator. The two dual-mode single-band-loop resonators are stacked on each other and create a dual-band bandpass filter. Some advantages of our design are compact size, high selectivity, low loss and also no dependence of two bands, resonance frequencies on each other. The measurement results exhibit that the minimum insertion losses are 0.19[Formula: see text]dB for 1.8[Formula: see text]GHz and 0.32[Formula: see text]dB for 2.4[Formula: see text]GHz. Moreover return losses are better than 43.2[Formula: see text]dB and 40.6[Formula: see text]dB for 1.8[Formula: see text]GHz and 2.4[Formula: see text]GHz, respectively. The proposed filter has a size of [Formula: see text][Formula: see text]mm2. This microstrip filter is fabricated on RT/Duroid6010 substrate with dielectric constant 10.8 and thickness 1.27[Formula: see text]mm and its equivalent circuit is also offered. The measured results exhibit good agreement with the simulated ones.


2016 ◽  
Vol 9 (5) ◽  
pp. 1029-1035 ◽  
Author(s):  
Jugul Kishor ◽  
Binod K. Kanaujia ◽  
Santanu Dwari ◽  
Ashwani Kumar

Synthesis of differential-mode bandpass filter (BPF) with good common-mode suppression has been described and demonstrated on the basis of ring dielectric resonator (RDR) for high-performance communication system. A RDR with two pairs of feeding lines has been used to excite TE01δ-mode. This unique combination of feeding lines and the ring resonator creates a differential passband. Meanwhile, TM01δ-mode of the DR can also be excited to achieve common-mode rejection in the stopband. Transmission zeros are created in the lower and upper stopband to further improve the selectivity of the proposed BPF. A second-order differential BPF is designed, fabricated and its performance is measured to validate the concept. There is good agreement between simulated and measured results.


Frequenz ◽  
2018 ◽  
Vol 72 (11-12) ◽  
pp. 533-537 ◽  
Author(s):  
Jin Xu ◽  
Qi-Hang Cai ◽  
Zhi-Yu Chen

Abstract This paper proposes a wideband bandpass filter (BPF) integrated single-pole double-throw (SPDT) switch by using the capacitively coupled LC resonators with loaded p-i-n diodes. The BPF-integrated on-state channel can be synthesized by using the coupled resonator filter theory, and the off-state channel with high suppression is built due to the misaligned resonant frequencies of LC resonators. As an example, a BPF-integrated SPDT switch is designed and fabricated with the central frequency of 1 GHz and the 3 dB fractional bandwidth of 29.7 %. The on-state channel has a measured insertion loss of 1.23 dB, and a 20 dB rejection wide stopband from 1.47 GHz to 8.6 GHz. The off state channel has a 43 dB suppression around 1 GHz. The isolation between two ports is better than 52.4 dB. The fabricated BPF-integrated SPDT switch size including bias circuits but excluding feeding lines has a compact size of 0.086 λg×0.096 λg.


Sign in / Sign up

Export Citation Format

Share Document