Low-Cost Transmitarray Antenna Designs in V-Band based on Unit-Cells with 1 Bit Phase Resolution

Frequenz ◽  
2019 ◽  
Vol 73 (11-12) ◽  
pp. 355-366
Author(s):  
Martin Frank ◽  
Benedict Scheiner ◽  
Fabian Lurz ◽  
Robert Weigel ◽  
Alexander Koelpin

Abstract This paper presents the design and characterization of linearly polarized low-cost transmitarray antennas with ± 70° azimuth beamforming range in V-band in order to add beam steering functionality to existing radar front ends. The transmitarray antennas are composed of 13 × 13 planar unit-cells. The unit-cells consist of two layers of RO4350B laminate and provide a one bit phase resolution. The desired unit-cell behavior has been validated by simulations and measurements. Eight transmitarrays with different phase distributions have been designed and fabricated to realize different beam steering angles in azimuth. The experimental characterization of the radiation patterns shows the desired performance in the frequency range from 59 GHz to 63 GHz. Additionally, steering angle combinations in azimuth and elevation up to 40° have been realized and successfully demonstrate by measuring the 2D radiation pattern.

Author(s):  
Randall L. Mayes ◽  
G. Richard Eisler

Abstract Experiments were performed to verify the analytical models for a robotic manipulator with two flexible links. A finite element model (FEM) employing two-dimensional beam elements was used to model the structure. A proportional model relating input voltage to output torque was used for both hub and elbow joint motors. With some minor adjustments to the link stiffness, the FEM modal frequencies matched the experimentally extracted frequencies within 1.5%. However the voltage-torque relationship for the hub motor was found to exhibit dynamics in the frequency range of interest.


2014 ◽  
Vol 56 (6) ◽  
pp. 1331-1333 ◽  
Author(s):  
Clarissa de L. Nóbrega ◽  
Marcelo R. da Silva ◽  
Paulo H. da F. Silva ◽  
Adaildo. G. D'Assunção

2020 ◽  
Vol 6 (47) ◽  
pp. eabc9943
Author(s):  
Benjamin Jenett ◽  
Christopher Cameron ◽  
Filippos Tourlomousis ◽  
Alfonso Parra Rubio ◽  
Megan Ochalek ◽  
...  

Mechanical metamaterials offer exotic properties based on local control of cell geometry and their global configuration into structures and mechanisms. Historically, these have been made as continuous, monolithic structures with additive manufacturing, which affords high resolution and throughput, but is inherently limited by process and machine constraints. To address this issue, we present a construction system for mechanical metamaterials based on discrete assembly of a finite set of parts, which can be spatially composed for a range of properties such as rigidity, compliance, chirality, and auxetic behavior. This system achieves desired continuum properties through design of the parts such that global behavior is governed by local mechanisms. We describe the design methodology, production process, numerical modeling, and experimental characterization of metamaterial behaviors. This approach benefits from incremental assembly, which eliminates scale limitations, best-practice manufacturing for reliable, low-cost part production, and interchangeability through a consistent assembly process across part types.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Haibing Chen ◽  
Qiang Cheng ◽  
Aihua Huang ◽  
Junyan Dai ◽  
Huiying Lu ◽  
...  

We present the design, fabrication, and experimental characterization of a modified two-dimensional Luneburg lens based on bulk metamaterials. The lens is composed by a number of concentric layers. By varying the geometric dimensions of unit cells in each layer, the gradient refractive index profile required for the modified Luneburg lens can be achieved. The cylindrical waves generated from a point source at the focus point of the lens could be transformed into plane waves as desired in the microwave frequency. The proposed modified Luneburg lens can realize wide-angle beam scanning when the source moves along the circumferential direction inside the lens. Numerical and experimental results validate the performance of the modified Luneberg lens.


2020 ◽  
Vol 56 (24) ◽  
pp. 1293-1295
Author(s):  
M. Frank ◽  
F. Lurz ◽  
R. Weigel ◽  
A. Koelpin

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1941
Author(s):  
Inzamam Ahmad ◽  
Sadiq Ullah ◽  
Shakir Ullah ◽  
Usman Habib ◽  
Sarosh Ahmad ◽  
...  

Modern advancements in wearable smart devices and ultra-high-speed terahertz (THz) communication systems require low cost, low profile, and highly efficient antenna design with high directionality to address the propagation loss at the THz range. For this purpose, a novel shape, high gain antenna for THz frequency range applications is presented in this work. The proposed antenna is based on a photonic bandgap (PBG)-based crystal polyimide substrate which gives optimum performance in terms of gain (9.45 dB), directivity (9.99 dBi), and highly satisfactory VSWR (<1) at 0.63 THz. The performance of the antenna is studied on PBGs of different geometrical configurations and the results are compared with the antenna based on the homogeneous polyimide-based substrate. The effects of variations in the dimensions of the PBG unit cells are also studied to achieve a −10 dB bandwidth of 28.97 GHz (0.616 to 0.64 THz).


2021 ◽  
Vol 21 (2) ◽  
pp. 153-160
Author(s):  
Biswarup Rana ◽  
In-Gon Lee ◽  
Ic-Pyo Hong

This paper proposes a reconfigurable unit cell for a transmitarray operating at the X band. The unit cell consists of an active patch, a passive patch, and a phase shifter. The active patch has two PIN diodes that change the phase of 180° of the transmitted waves. The passive and active patches both have circular slots to enhance the bandwidth of the transmitted wave. We also propose a new type of experimental characterization technique to measure the performance of the unit cells at the X band without fabricating the entire transmitarray. Instead of a 1 unit cell as described in the literature, we propose 2 × 2 unit cells to measure the performance of unit cells using the X band waveguide. The waveguide consists of a WR-90 section and a rectangular to square waveguide transition section that can be fit to our proposed structure. A good agreement between simulated and measured results was found.


Author(s):  
Randall L. Mayes ◽  
G. Richard Eisler

Abstract Experiments were performed to verify the analytical models for a robotic manipulator with two flexible links. A finite element model (FEM) employing two-dimensional beam elements was used to model the structure. A proportional model relating input voltage to output torque was used for both hub and elbow joint motors. With some minor adjustments to the link stiffness, the FEM modal frequencies matched the experimentally extracted frequencies within 1.5%. However the voltage-torque relationship for the hub motor was found to exhibit dynamics in the frequency range of interest.


Sign in / Sign up

Export Citation Format

Share Document