Compact ultra-wideband monopole antenna with tunable notch bandwidth/frequency ratio

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karunesh Srivastava ◽  
Gaurav Varshney ◽  
Rajeev Singh

Abstract A compact tunable notch band ultra-wideband (UWB) antenna is implemented. The band notch characteristics have been obtained by placing a square-shaped metallic loop in the upper ground plane connected via PIN diode. The obtained notched frequency bandwidth can be altered by changing the states of the PIN diode. UWB response with narrow-band notch operation is observed when PIN diode is in ON state. When the PIN diode is in OFF state, the bandwidth of the obtained band notch widens by suppressing the first higher-order resonance and thus a narrow dual-band response is obtained. Moreover, the ratio of the frequency of first higher-order to the fundamental mode in the pass-band can be tuned with the different values as 1.584 and 2.20 in the ON and OFF state of the PIN diode, respectively. Furthermore, the antenna structure offers a compact geometry for the operation with the UWB response with band notch characteristics.

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.


2021 ◽  
Vol 25 (1) ◽  
pp. 11-19
Author(s):  
Mohamed Debab ◽  
◽  
Amina Bendaoudi ◽  
Zoubir Mahdjoub ◽  
◽  
...  

In this article, a dual-band notched ultra-wideband (UWB) dielectric resonator antenna is proposed. The antenna structure consists of Crescent Moon Dielectric Resonator (CMDR) fed by a stepped microstrip monopole printed antenna, partial ground plane, and an I-shaped stub. The Crescent Moon dielectric resonator is placed on the microstrip monopole printed antenna to achieve wide impedance bandwidth, and the I-shaped stub is utilized to improve impedance bandwidth for the WiMAX band. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. The entire band is useful with two filtered bands at 5.5 GHz and 6.8 GHz by the creation of notches. The band’s rejection, WLAN band (5.2–5.7 GHz), and the downlink frequency band of ITU 7 GHz-band for satellite communication (6.5–7.3 GHz) is realized by inserting G-shaped and C-shaped slots in the ground. The simulation results demonstrate that the proposed CMDR antenna achieves satisfactory UWB performance, with an impedance bandwidth of around 88.7%, covers the frequency band of 3.2 - 8.3 GHz, excluding a rejection band for the WLAN and ITU 7 GHz band. The CMDR is simulated using HFSS and CST high-frequency simulators.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Wang ◽  
Yan Zhang

A new compact ultra-wideband (UWB) antenna with triband-notched characteristics is presented. The structure of the proposed antenna is simple and symmetric. A modified ground is introduced to obtain a wide impedance bandwidth of 2.9–13.4 GHz withS11<-10 dB. By inserting two arc-shaped slots in the radiation patch, two sharp bands of 3.3–3.7 GHz and 5.15–5.35 GHz are notched. The notch band of 7.25–7.75 GHz is achieved by etching a U-shaped slot in the ground plane. The notched bands can be controlled, respectively, while the characteristics of the proposed UWB antenna almost keep completely unchanged at the unnotched frequencies. Equivalent circuit models, surface current distributions, and input impedance are applied to analyze the principle of the proposed UWB antenna. Parametric studies are given. Simulated and measured results show that the proposed antenna has good impedance matching, stable radiation patterns, and constant gain.


2015 ◽  
Vol 9 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Tapan Mandal ◽  
Santanu Das

A coplanar waveguide-fed planar hexagonal monopole ultra-wideband antenna with dual-band rejection characteristics is proposed in this paper. The desired notch frequencies at 3.5 and 5.5 GHz are realized by incorporating mushroom structures. The input impedance and surface current distributions are used for analysis and explanation of the effects of mushroom cells. The prototype and proposed antennas are fabricated and tested. From the measured results, the proposed antenna provides an operating band of 2.81–14.32 GHz for 2 ≤ voltage standing wave ratio (VSWR), while the dual-band stop function is in the frequency bands of 3.3–3.7 GHz and 5.10–5.88 GHz. Moreover, the antenna model also exhibits constant group delay and linear phase in the pass band. The proposed antenna has appreciable gain and efficiency over the whole operating band except the notch bands.


2015 ◽  
Vol 9 (2) ◽  
pp. 357-363 ◽  
Author(s):  
Zhijun Tang ◽  
Xiaofeng Wu ◽  
Zaifang Xi ◽  
Shigang Hu

A simple and compact printed ultra-wideband antenna with dual-band-notched characteristics is presented. The proposed antenna is composed of a rectangular patch and a modified ground plane. The rectangular patch is etched onto a lossy FR4 substrate. A circular ring strip parasitizes the rectangular patch embedded by a U-shaped slot. Two inverted-L slits and a rectangular slit are embedded onto the ground plane. Some bandwidth enhancement and band-notched techniques are applied in the antenna structure for broadening the bandwidth and generating notches. The simulated and measured results show that the proposed antenna offers a very wider bandwidth ranging from 3.04 to 17.30 GHz, defined by the return loss less than −10 dB, with dual-notched bands of 3.30–4.20 and 5.10–5.85 GHz covering the 3.3/3.7 GHz WiMAX, 3.7/4.2 GHz C-band, and 5.2/5.8 GHz wireless local area network systems. Furthermore, the proposed antenna presents relatively high antenna gain and quasi-omnidirectional radiation patterns.


2012 ◽  
Vol 195-196 ◽  
pp. 13-16
Author(s):  
Wen Bo Zeng ◽  
Jia Zhao ◽  
Bao Zhong Ke ◽  
Qi Qi Wu

An ultra-wideband (UWB) printed antenna with dual band-notched characteristic is presented in this paper. The proposed antenna is composed of a semi-circular patch fed by a tapered coplanar waveguide (CPW) and an unclosed ground plane, which are printed onto the same side of a FR4 printed circuit board (PCB) with an overall size of 30 mm × 30 mm × 1.5 mm. By embedding a simple arc-shaped slot in the patch and adding a T-shaped strip on the top of the patch, two notched frequency bands for rejection of WiMAX and WLAN system can be realized. The characteristics of the proposed antenna are investigated by using the software HFSS and validated experimentally, both simulated and measured results show that the proposed antenna prototype achieves good impedance matching over an frequency band from 2.1011.40 GHz for VSWR2 with two notched bands over the frequency range of 5-5.95 GHz and 3.1-3.9 GHz. Furthermore, a relatively stable gain and suitable radiation patterns are also achieved in both lower and upper UWB frequency band.


2018 ◽  
Vol 10 (9) ◽  
pp. 1065-1071 ◽  
Author(s):  
Hailong Yang ◽  
Xiaoli Xi ◽  
Hualong Hou ◽  
Yuchen Zhao ◽  
Yanning Yuan

AbstractA compact printed reconfigurable monopole antenna with switchable band-notches is designed and manufactured. The proposed antenna mainly consists of a disc-like radiator with two pairs of T-shaped strips protruded inside a rectangular aperture. Five PIN diode switches are employed to bridge or open the slots, which allow the antenna to be configured into three different structures functioning as an ultra-wideband (UWB) antenna, or an antenna with notched frequencies at WLAN or WiMAX band. Design and optimization of the antenna are done using CST Microwave Studio. After fabrication on an FR4 substrate with dimensions of 35 mm (width) × 41 mm (length) × 1.5 mm (thickness), numerical and experimental results of the proposed reconfigurable antenna are presented and discussed. The experimental results confirm the design as a good candidate for UWB applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yingsong Li ◽  
Wenxing Li ◽  
Qiubo Ye

A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.


2015 ◽  
Vol 8 (8) ◽  
pp. 1197-1206 ◽  
Author(s):  
Seyed Saeed Mirmosaei ◽  
Seyed Ebrahim Afjei ◽  
Esfandiar Mehrshahi ◽  
Mohammad M. Fakharian

In this paper, an ultra-wideband (UWB) planar monopole antenna with impedance bandwidth from 2.83 to 11.56 GHz and dual band-notched characteristics is presented. The antenna consists of a small rectangular ground plane, a bat-shaped radiating patch, anda 50-Ω microstrip line. The notched bands are realized by introducing two different types of structures. The half-wavelength spiral-slots are etched on the radiating patch to obtain a notched band in 5.15 5.925 GHz for WLAN, HIPERLAN, and DSRC systems. Based on the single band-notched UWB antenna, the second notched band is realized by etching a folded stepped impedance resonator as defected ground structure on the ground plane for WiMAX and C-band communication systems. The notched frequencies can be adjusted by altering the length of resonant cells. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications.


Sign in / Sign up

Export Citation Format

Share Document