scholarly journals A CPW-Fed Circular Wide-Slot UWB Antenna with Wide Tunable and Flexible Reconfigurable Dual Notch Bands

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yingsong Li ◽  
Wenxing Li ◽  
Qiubo Ye

A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.

2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Amin M. Abbosh

A complete design method for a compact uniplanar ultra-wideband antenna with subband rejection capability is presented. A slotline resonator is incorporated in the coplanar waveguide feeder of the antenna to act as a bandstop filter, hence enabling the rejection of any undesired band within the passband of the antenna. Two samples of the proposed antenna were designed and manufactured. One of the developed antennas does not contain a resonator, whereas the other contains a slotline resonator. The designed antennas feature a compact size of 27 mm×27 mm. Results of the simulation and measurement show that the designed antennas have a bandwidth from 3 GHz to more than 11 GHz. The results also reveal that the use of the resonator in the feeder of the antenna efficiently rejects any undesired subband, such as the 4.9–5.9 GHz band assigned for IEEE802.11a and HIPERLAN/2. The gain of the antennas with the resonator is about 2.2 dBi at the passband, while it is less than −8 dBi at the rejected subband.


2022 ◽  
Vol 12 (2) ◽  
pp. 821
Author(s):  
Sarosh Ahmad ◽  
Umer Ijaz ◽  
Salman Naseer ◽  
Adnan Ghaffar ◽  
Muhammad Awais Qasim ◽  
...  

A type of telecommunication technology called an ultra-wideband (UWB) is used to provide a typical solution for short-range wireless communication due to large bandwidth and low power consumption in transmission and reception. Printed monopole antennas are considered as a preferred platform for implementing this technology because of its alluring characteristics such as light weight, low cost, ease of fabrication, integration capability with other systems, etc. Therefore, a compact-sized ultra-wideband (UWB) printed monopole antenna with improved gain and efficiency is presented in this article. Computer simulation technology microwave studio (CSTMWS) software is used to build and analyze the proposed antenna design technique. This broadband printed monopole antenna contains a jug-shaped radiator fed by a coplanar waveguide (CPW) technique. The designed UWB antenna is fabricated on a low-cost FR-4 substrate with relative permittivity of 4.3, loss tangent of 0.025, and a standard height of 1.6 mm, sized at 25 mm × 22 mm × 1.6 mm, suitable for wireless communication system. The designed UWB antenna works with maximum gain (peak gain of 4.1 dB) across the whole UWB spectrum of 3–11 GHz. The results are simulated, measured, and debated in detail. Different parametric studies based on numerical simulations are involved to arrive at the optimal design through monitoring the effects of adding cuts on the performance of the proposed antennas. Therefore, these parametric studies are optimized to achieve maximum antenna bandwidth with relatively best gain. The proposed patch antenna shape is like a jug with a handle that offers greater bandwidth, good gain, higher efficiency, and compact size.


Frequenz ◽  
2015 ◽  
Vol 69 (9-10) ◽  
Author(s):  
Yingsong Li ◽  
Qiubo Ye

AbstractA coplanar waveguide (CPW) fed circular slot ultra-wideband (UWB) antenna with triple band-notched characteristics is proposed and its performance is evaluated by HFSS simulation and measurement. The three notch bands are realized by means of two arc-shaped parasitic elements (ASPEs) and an E-shaped stub (ESS). By adjusting the dimensions of the ASPEs and ESS, three notch bands can be tuned to filter unwanted 3.5 GHz WiMAX, 5.5 GHz WLAN and 8 GHz X-band signals. The simulated and measured results demonstrate that the proposed antenna covers the entire UWB band with voltage standing wave ratio (VSWR) less than 2 and provides three notch bands to reduce potential interferences from existing narrowband systems. Furthermore, this tri-band frequency rejection UWB antenna can provide omnidirectional radiation patterns and high rejection band-notched characteristics, which are suitable for UWB communication applications.


2015 ◽  
Vol 9 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Raj Kumar ◽  
Neha Pazare

An ultra-wideband (UWB) slot antenna for diversity applications is introduced. The overall structure of the antenna consists of two similar coplanar waveguide (CPW)-fed stepped rectangular slots placed in an orthogonal position. The slots are asymmetric with respect to their placement in the ground plane. The CPW feeds are double stepped and terminated on hexagonal patches for better impedance matching. A wide impedance bandwidth (measured) from 3 to 12 GHz with an isolation better than 15 dB is obtained with this antenna. To improve the isolation, the design is modified and an I-shaped slot strip is introduced between the two slot antennas. With this, the isolation is brought about 25 dB of most of the band, while the impedance bandwidth remains the same (2.8–12 GHz for port 1, measured and 2.9–12 GHz for port 2, measured). The far-field radiation patterns are also measured and a peak gain of about 5 dBi is obtained. Finally, the diversity parameters such as envelope correlation coefficient and capacity loss are calculated and found to have low values. The antenna is expected to be useful for UWB diversity applications with good isolation.


2018 ◽  
Vol 10 (10) ◽  
pp. 1186-1195 ◽  
Author(s):  
Seyed Ramin Emadian ◽  
Javad Ahmadi-Shokouh

AbstractFrequency- and time-domain characteristics as well as indoor propagation channel impulse response of a compact dual band-notched ultra-wideband (UWB) slot antenna are investigated in this paper. The antenna consists of a narrow rectangular radiation patch and a rectangular wide slot in the modified ground plane. A pair of L-shaped stubs are connected to the radiation patch to obtain band-notched property in WLAN band and a narrow straight stub is placed on the back side of the substrate to create band-notched characteristics in X-band downlink satellite communication system. Moreover, two small parasitic strips are added to the radiation patch to enhance the bandwidth (BW) of the antenna up to 14 GHz. A comprehensive study on time-domain and indoor propagation channel characteristics of the proposed antenna is also presented throughout the paper. A ray-tracing approach based on geometrical optics is applied to analyze the indoor channel characteristics. The designed antenna not only has a wide BW and compact size but also has appropriate radiation and time-domain characteristics over the antenna operating BW. The measured and simulated results are in good agreement. These advantages make the proposed antenna as a desirable option for UWB impulse radio applications.


2015 ◽  
Vol 9 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Tapan Mandal ◽  
Santanu Das

A coplanar waveguide-fed planar hexagonal monopole ultra-wideband antenna with dual-band rejection characteristics is proposed in this paper. The desired notch frequencies at 3.5 and 5.5 GHz are realized by incorporating mushroom structures. The input impedance and surface current distributions are used for analysis and explanation of the effects of mushroom cells. The prototype and proposed antennas are fabricated and tested. From the measured results, the proposed antenna provides an operating band of 2.81–14.32 GHz for 2 ≤ voltage standing wave ratio (VSWR), while the dual-band stop function is in the frequency bands of 3.3–3.7 GHz and 5.10–5.88 GHz. Moreover, the antenna model also exhibits constant group delay and linear phase in the pass band. The proposed antenna has appreciable gain and efficiency over the whole operating band except the notch bands.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hao Liu ◽  
Ziqiang Xu

A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively.


2012 ◽  
Vol 195-196 ◽  
pp. 13-16
Author(s):  
Wen Bo Zeng ◽  
Jia Zhao ◽  
Bao Zhong Ke ◽  
Qi Qi Wu

An ultra-wideband (UWB) printed antenna with dual band-notched characteristic is presented in this paper. The proposed antenna is composed of a semi-circular patch fed by a tapered coplanar waveguide (CPW) and an unclosed ground plane, which are printed onto the same side of a FR4 printed circuit board (PCB) with an overall size of 30 mm × 30 mm × 1.5 mm. By embedding a simple arc-shaped slot in the patch and adding a T-shaped strip on the top of the patch, two notched frequency bands for rejection of WiMAX and WLAN system can be realized. The characteristics of the proposed antenna are investigated by using the software HFSS and validated experimentally, both simulated and measured results show that the proposed antenna prototype achieves good impedance matching over an frequency band from 2.1011.40 GHz for VSWR2 with two notched bands over the frequency range of 5-5.95 GHz and 3.1-3.9 GHz. Furthermore, a relatively stable gain and suitable radiation patterns are also achieved in both lower and upper UWB frequency band.


Sign in / Sign up

Export Citation Format

Share Document