scholarly journals Traditional versus modern settlement on torrential alluvial fans considering the danger of debris flows: a case study of the Upper Sava Valley (NW Slovenia)

2019 ◽  
Vol 11 (1) ◽  
pp. 627-637
Author(s):  
Mateja Breg Valjavec ◽  
Blaž Komac

Abstract We analysed spatial development of traditional and modern settlements on active alluvial fans in the Upper Sava Valley (NW Slovenia), by using old cadastral data from the beginning of the 19th century, time series of aerial photographs from the middle of the 20th century and recent building cadastre. The valley is surrounded by the mountainous Julian Alps in the south and the Karavanke Mountains in the north where there is a lack of space for settlements due to steep slopes that are increasing the danger of slope processes, torrential processes and floods. By using a very high-resolution 1m LiDAR digital elevation model, we defined the morphometry of alluvial fans and the characteristics of the drainage system of contributing tributaries. We classified the areas according to the threat posed by the modelled torrents and debris flows. We analysed the resilience of settlement in different periods from this perspective and evaluated the integration of natural processes effects in modern spatial planning projects. We found that geomorphic processes threaten a relatively large proportion of some new and old settlements on alluvial fans and that safe planning of areas of settlement has been successful neither in the past nor in recent decades.

2016 ◽  
Vol 47 (1) ◽  
pp. 335 ◽  
Author(s):  
A. Skentos ◽  
N. Liosis ◽  
K. Pavlopoulos

This study concerns the geomorphological mapping of the area included in the map sheets Koropi and Plaka of the Hellenic Military Geographical Service map distribution in scale 1:50.000. This is an extensive area of East Attica which presents a complex terrain and a wide variety of landforms, due to its intense tectonism and the natural processes that shaped its morphology. The primary data that were used in the creation of the map mainly included geological and topographic maps, from which thematic layers of the topography, hydrography and geology were constructed through GIS processes. A Digital Elevation Model was also constructed, from which the slope and aspect maps were created. The thematic maps of slοpe and lithology were classified into categories, which were combined to constitute detection criteria of landforms. Decisive contribution in mapping was provided by the available orthophotomaps and aerial photographs, as well as the field work. Finally, with the appropriate combination of colors and symbols the geomorphological map of the study area was produced.


2004 ◽  
Vol 4 (3) ◽  
pp. 347-358 ◽  
Author(s):  
L. Melelli ◽  
A. Taramelli

Abstract. We present a GIS-based model for predicting debris-flows occurrence. The availability of two different digital datasets and the use of a Digital Elevation Model (at a given scale) have greatly enhanced our ability to quantify and to analyse the topography in relation to debris-flows. In particular, analysing the relationship between debris-flows and the various causative factors provides new understanding of the mechanisms. We studied the contact zone between the calcareous basement and the fluvial-lacustrine infill adjacent northern area of the Terni basin (Umbria, Italy), and identified eleven basins and corresponding alluvial fans. We suggest that accumulations of colluvium in topographic hollows, whatever the sources might be, should be considered potential debris-flow source areas. In order to develop a susceptibility map for the entire area, an index was calculated from the number of initiation locations in each causative factor unit divided by the areal extent of that unit within the study area. This index identifies those units that produce the most debris-flows in each Representative Elementary Area (REA). Finally, the results are presented with the advantages and the disadvantages of the approach, and the need for further research.


1997 ◽  
Vol 24 ◽  
pp. 255-261 ◽  
Author(s):  
Cecilie Rolstad ◽  
Jostein Amlien ◽  
Jon-Ove Hagen ◽  
Bengt Lundén

A field of vectors showing the average velocity of the surging glacier Osbornebreen, Svalbard, was determined by comparing sequential SPOT (Système pour l’Observation de la Terre) and Landsat thematic mapper images. Crevasses which developed during the initial phase of the surge in the winter of 1986–87 were tracked using a fast Fourier chip cross-correlation technique. A digital elevation model (DEM) was developed using digital photogrammetry on aerial photographs from 1990. This new DEM was compared with a map drawn in 1966. The velocity field could be almost entirely determined with 1 month separation of the images, but only partly determined with images 1 year apart, due to changes of the crevasse pattern. The velocity field is similar to that found for Kronebreen, a continuously fast-moving tidewater glacier. No distinct zones of compressive flow were present and the data gave no evidence of a compression zone/surge front traveling downstream. The velocity field, the rapid advance of the terminus and the development of transverse crevasses in the upper accumulation area within a 6 month period may indicate that the surge developed as a zone of extension starting near the terminus and propagating quickly upstream. The crevasse pattern in the images is therefore interpreted to be the result of the extension zone traveling upstream, and, as the whole glacier starts to slide, the crevasse pattern alters according to the bedrock topography.


2011 ◽  
Vol 5 (1) ◽  
pp. 401-430 ◽  
Author(s):  
C. Mayer ◽  
A. Lambrecht ◽  
W. Hagg ◽  
Y. Narozhny

Abstract. Glaciers are important water storages on a seasonal and long-term time scale. Where high mountains are surrounded by arid lowlands, glacier runoff is an important source of water during the growing season. This situation can be found in the Altay mountains in Southern Siberia, where the recent glacierization of >700 km2 is subject to continuous mass loss, even though the shrinking is comparably slow. The glacier retreat is accompanied by an extension of supra-glacial moraine, which itself strongly influences ablation rates. To quantify these effects, the spatial evolution of debris cover since 1952 was analysed for three glaciers in the North Chuya Ridge using satellite and airborne imagery. In summer 2007, an ablation experiment was carried out on debris covered parts of Maliy Aktru glacier. Thermistors in different depths within the moraine provided data to calculate thermal resistance of the debris. A set of ablation stakes was installed at locations with differing debris thickness and observed regularly throughout the entire melt season. Air temperature from an AWS was used to calculate degree day factors in dependence of the debris thickness. To take into account the shading effect of surrounding walls and peaks, the potential solar radiation and its evolution throughout the summer was determined from a digital elevation model. This allows us to extrapolate our measurements from Maliy Aktru to the other two glaciers of the Aktru basin and to estimate basin melt rates. In addition accumulated ice melt was derived for 12 glaciers in the North Chuya Range. Changes in summer runoff from the 1960s are compared to the results from our melt model and the evolution of debris cover is analysed in respect to the melt activity.


2015 ◽  
Vol 19 (suppl. 2) ◽  
pp. 427-435 ◽  
Author(s):  
Jelena Lukovic ◽  
Branislav Bajat ◽  
Milan Kilibarda ◽  
Dejan Filipovic

Solar radiation is a key driving force for many natural processes. At the Earth?s surface solar radiation is the result of complex interactions between the atmosphere and Earth?s surface. Our study highlights the development and evaluation of a data base of potential solar radiation that is based on a digital elevation model (DEM) with a resolution of 90 m over Serbia. The main aim of this paper is to map solar radiation in Serbia using DEM. This is so far the finest resolution being applied and presented using DEM. The final results of the potential direct, diffuse and total solar radiation as well as duration of insolation databases of Serbia are portrayed as thematic maps that can be communicated and shared easily through the cartographic web map-based service.


2006 ◽  
Vol 21 (4) ◽  
pp. 195-202
Author(s):  
Marvin R. Pyles ◽  
Mari Kramer

Abstract An aerial photo-based inventory of landslides on recently harvested and reforested land after a significant landslide-producing storm in February 1996, was compared with a digital elevation model-based assessment of slope stability (shallow landsliding stability model [SHALSTAB]) for Confederated Tribes of Siletz Indians (CTSI) and surrounding forestland. The SHALSTAB predictions of landslide locations did not correlate well with the locations of observed landslides. Eighty-nine percent of the landslides on the more stable landform in the southern portion of the CTSI ownership occurred on land that SHALSTAB indicated to be at a low risk of landsliding. Seventy-two percent of the landslides on the less stable landform to the north occurred on land that SHALSTAB indicated to be at a low risk of landsliding. Conversely, only 11 and 28%, respectively, of the observed landslides occurred on lands predicted to be “chronically unstable” or at “high risk” by SHALSTAB. This level of correct prediction of landsliding was judged to be unacceptable for SHALSTAB to be used for slope stability assessment as a part of forest management planning. West. J. Appl. For. 21(4):195–202.


2010 ◽  
Vol 10 (3) ◽  
pp. 547-558 ◽  
Author(s):  
L. Marchi ◽  
M. Cavalli ◽  
V. D'Agostino

Abstract. Alluvial fans are often present at the outlet of small drainage basins in alpine valleys; their formation is due to sediment transport associated with flash floods and debris flows. Alluvial fans are preferred sites for human settlements and are frequently crossed by transport routes. In order to reduce the risk for economic activities located on or near the fan and prevent loss of lives due to floods and debris flows, torrent control works have been extensively carried out on many alpine alluvial fans. Hazard management on alluvial fans in alpine regions is dependent upon reliable procedures to evaluate variations in the frequency and severity of hydrogeomorphic processes and the long-term performance of the torrent training works. An integrated approach to the analysis of hydrogeomorphic processes and their interactions with torrent control works has been applied to a large alluvial fan in the southern Carnic Alps (northeastern Italy). Study methods encompass field observations, interpretation of aerial photographs, analysis of historical documents, and numerical modelling of debris flows. The overall performance of control works implemented in the early decades of 20th century was satisfactory, and a reduction of hazardous events was recognised from features observed in the field and in aerial photographs, as well as from the analysis of historical records. The 2-D simulation of debris flows confirms these findings, indicating that debris flow deposition would not affect urban areas or main roads, even in the case of a high-magnitude event. Present issues in the management of the studied alluvial fan are representative of situations frequently found in the European Alps and deal with the need for maintenance of the control structures and the pressures for land use changes aimed at the economic exploitation of the fan surface.


Geosciences ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 363 ◽  
Author(s):  
Hideaki Goto ◽  
Kohsaku Arai ◽  
Taichi Sato

Anaglyphs produced using a digital elevation model (DEM) are effective to identify the characteristic tectono–geomorphic features. The objective of this study is to reinvestigate the tectonic geomorphology and to present novel tectonic maps of the late Quaternary in and around the Yoron island based on the interpretation of extensive topographical anaglyphs along the map areas that cover the inland and seafloor. Vintage aerial photographs are used to produce the 3-m mesh inland digital surface model (DSM); further, the 0.6-s to 2-s-mesh seafloor DEM is processed using the cloud point data generated through previous surveys. Thus, we identify anticlinal deformation on both the Pleistocene marine terrace and the seafloor to the north of the island. The deformation axis extends in a line and is parallel to the general trend of the island shelf. The Tsujimiya fault cuts the marine terraces, which extend to the Yoron basin’s seafloor. If we assume that the horizontal compressive stress axis is perpendicular to the island shelf, these properties can easily explain the distribution and style of the active faults and deformation. This study presents an effective methodology to understand the island arc tectonics, especially in case of small isolated islands.


2018 ◽  
Vol 17 (2) ◽  
pp. 65-80
Author(s):  
Eva Stopková

The paper summarizes the geodetic contribution for the Slovak team within the joint Polish-Slovak archaeological mission at Tell el-Retaba in Egypt. Surveying work at archaeological excavations is usually influenced by somewhat specific subject of study and extreme conditions, especially at the missions in the developing countries. The case study describes spatial data development according to the archaeological conventions in order to document spatial relationships between the objects in excavated trenches. The long-term sustainability of surveying work at the site has been ensured by detailed metadata recording. Except the trench mapping, Digital Elevation Model has been calculated for the study area and for the north-eastern part of the site, with promising preliminary results for further detection and modelling of archaeological structures. In general, topographic mapping together with modern technologies like Photogrammetry, Satellite Imagery, and Remote Sensing provide valuable data sources for spatial and statistical modelling of the sites; and the results offer a different perspective for the archaeological research.


Landslides ◽  
2020 ◽  
Vol 17 (12) ◽  
pp. 2795-2809 ◽  
Author(s):  
Erin K. Bessette-Kirton ◽  
Jeffrey A. Coe ◽  
William H. Schulz ◽  
Corina Cerovski-Darriau ◽  
Mason M. Einbund

Abstract Mobility is an important element of landslide hazard and risk assessments yet has been seldom studied for shallow landslides and debris flows in tropical environments. In September 2017, Hurricane Maria triggered > 70,000 landslides across Puerto Rico. Using aerial imagery and a lidar digital elevation model (DEM), we mapped and characterized the mobility of debris slides and flows in four different geologic materials: (1) mudstone, siltstone, and sandstone; (2) submarine basalt and chert; (3) marine volcaniclastics; and (4) granodiorite. We used the ratio of landslide-fall height (H) to travel length (L), H/L, to assess the mobility of landslides in each material. Additionally, we differentiated between landslides with single and multiple source areas and landslides that either did or did not enter drainages. Overall, extreme rainfall contributed to the mobility of landslides during Hurricane Maria, and our results showed that the mobility of debris slides and flows in Puerto Rico increased linearly as a function of the number of source areas that coalesced. Additionally, landslides that entered drainages were more mobile than those that did not. We found that landslides in soils developed on marine volcaniclastics were the most mobile and landslides in soils on submarine basalt and chert were the least mobile. While landslides were generally small (< 100 m2) and displayed a wide range of H/L values (0.1–2), coalescence increased the mobility of landslides that transitioned to debris flows. The high but variable mobility of landslides that occurred during Hurricane Maria and the associated hazards highlight the importance of characterizing and understanding the factors influencing landslide mobility in Puerto Rico and other tropical environments.


Sign in / Sign up

Export Citation Format

Share Document