scholarly journals The Campanian–Maastrichtian foraminiferal biostratigraphy of the basement sediments from the southern Pannonian Basin (Vojvodina, northern Serbia): implications for the continuation of the Eastern Vardar and Sava zones

2017 ◽  
Vol 68 (2) ◽  
pp. 130-146 ◽  
Author(s):  
Milena Dunčić ◽  
Ivan Dulić ◽  
Olivera Popov ◽  
Goran Bogićević ◽  
Alan Vranjković

Abstract Micropalaeontological and biostratigraphical studies included Campanian-Maastrichtian complexes from five oil exploration wells drilled in northern Serbia (Vojvodina): the first is a carbonate-clastic complex and second is a complex containing ophiolites intercalated with hemipelagic and pelagic sediments. Within the studied complexes, rich associations of planktonic and benthic foraminifera, calcareous nannoplankton, palynomorphs, as well as shallow and deep-water fossil detritus were determined. The presence of relatively rich associations of planktonic foraminifera allowed recognition of two biozones: the Globotruncana ventricosa Zone, observed in the sediments of the carbonate-clastic complex and the Gansserina gansseri Zone, observed in both complexes. Except biozones, based on documented index species, for some units in both complexes, larger benthic foraminifera species had special biostratigraphical value, and in some of them, the calcareous nannoplankton zones were recognized. The studied complexes represent deep-water formations, generated in oceanic island arc and trough zones. The presence of limestones, which originate from destroyed rudist reefs, is explained by transfer by means of gravitational transport mechanisms of shallow-water sediments to deep-water depositional environments. In this paper, the results of more detailed biostratigraphical and palaeo-ecological studies of foraminifera associations in Campanian-Maastrichtian complexes in Vojvodina are presented. Combined with lithological studies, seven units were determined within the complexes. The obtained results are important as a part of multidisciplinary, regional exploration of both complexes, generated in specific geological conditions, that today constitute a part of the pre-Neogene basement complex in the southeastern part of the Pannonian Basin. The Campanian- Maastrichtian carbonate-clastic complex represents sedimentary cover of the Eastern Vardar Ophiolitic Unit, while the ophiolites intercalated with hemipelagic and pelagic limestones belongs to the Sava Zone.

1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


1988 ◽  
Vol 62 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


2016 ◽  
Vol 8 (1) ◽  
pp. 45-51
Author(s):  
Szabolcs Borka

AbstractThe aim of this study was to examine the relationship between structural elements and the so-called genetic lithofacies in a clastic deep-water depositional system. Process-sedimentology has recently been gaining importance in the characterization of these systems. This way the recognized facies attributes can be associated with the depositional processes establishing the genetic lithofacies. In this paper this approach was presented through a case study of a Tertiary deep-water sequence of the Pannonian-basin.Of course it was necessary to interpret the stratigraphy of the sequences in terms of “general” sedimentology, focusing on the structural elements. For this purpose, well-logs and standard deep-water models were applied.The cyclicity of sedimentary sequences can be easily revealed by using Markov chains. Though Markov chain analysis has broad application in mainly fluvial depositional environments, its utilization is uncommon in deep-water systems. In this context genetic lithofacies was determined and analysed by embedded Markov chains. The randomness in the presence of a lithofacies within a cycle was estimated by entropy tests (entropy after depositional, before depositional, for the whole system). Subsequently the relationships between lithofacies were revealed and a depositional model (i.e. modal cycle) was produced with 90% confidence level of stationarity. The non-randomness of the latter was tested by chi-square test.The consequences coming from the comparison of “general” sequences (composed of architectural elements), the genetic-based sequences (showing the distributions of the genetic lithofacies) and the lithofacies relationships were discussed in details. This way main depositional channel has the best, channelized lobes have good potential hydrocarbon reservoir attributes, with symmetric alternation of persistent fine-grained sandstone (Facies D) and muddy fine-grained sandstone with traction structures (Facies F)


2020 ◽  
Vol 26 (1) ◽  
pp. 9-14
Author(s):  
Umoh Ekaete Enamekere ◽  
Fasina Peace Oluwaseyi

Foraminiferal analysis was carried out on twenty five (25) ditch cutting samples from well -AA, offsore Niger Delta covering a depth interval of 9000ft-11025f. The study was aimed at age deduction, zoning the well, and interpreting the paleoenvironment of deposition. Lithostratigraphic description carried out on the sample revealed that the bulk lithofacies constitute shale with streaks of sand (fine-medium) between 9170ft - 9210ft and 9360ft -9380ft. The entire analysed interval was barren of planktonic foraminifera while depth 9960ft revealed a spot occurrence of Lagena spp,representing the only calcareous benthic foraminifera recovered in the entire interval. Few to common occurrences of deepwater agglutinated foraminifera were found in the well, dominated by some species of Haplophragmoides spp and Haplophragmoides narivaensis. Other foraminifera with rare and scattered occurrence includes, Cribrostomides spp, Bathysiphon spp, Troahammina spp, Cyclammina spp, Cyclammina cancellata, Valvulina spp, and Glomospira spp. The only microfaunal associated accessory recovered is ostracod at depth 1080ft. The analysed intervals was assigned a Middle – Late Miocene (N17 and older age) based on the FDO of Haplophragmoides narivaensis. The  environment of deposition is based on the distribution of typical deep water arenaeceous foraminifera species recovered in the study. The predominance of the arenaeceous forms over calcareous forms suggest outer shelf environment of deposition. Keywords: Foraminifera, Palaeoenvironment, Niger delta, Biostratigraphy.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Narjess Karoui-Yaakoub ◽  
Moncef Saïd Mtimet ◽  
Mohamed Hédi Negra ◽  
Chaima Grira ◽  
Wafa Gusemi

In Tunisia, the Paleocene biomarkers are identified within the El Haria Formation shales. The Selandian is absent in most of the Paleocene outcrops and the Thanetian is unconformable to different stages of the Cretaceous. In the middle of Selandian, with the beginning of the Globanomalina pseudomenardii (P4) zone, we note that the assemblage of planktonic foraminifera becomes very poorly preserved and much less abundant than at the base. It is represented by rare species and there has been a start of the microfauna dissolution tests and an enrichment in iron oxides, silica, and gypsum crystals. The dissolution process is increasing more and more and a drop in the content of carbonates is clearly recorded at the top of Selandian. However, we note that some small benthic foraminifera belonging to the genera Lenticulina and Anomalina escape the dissolution and very few planktonic foraminifera belonging to the genera Subbotina are preserved. This dramatic and abnormal dissolution extends over a considerable thickness. These features could be an expression of the mid-Paleocene biotic event (MPBE), registered for the first time in Tunisia. This intense dissolution is caused probably by the change in the solubility of carbonates, which may be related to the changes in the deep-water circulation or to the change in the productivity of the surface waters.


2020 ◽  
pp. 8-19
Author(s):  
E. S. Milei ◽  
S. R. Bembel

The article is devoted to a comprehensive analysis of the geological structure of a complex oil reservoir located in the southeastern part of the Pannonian basin. The concept of the hydrocarbon traps formation is based on the connection with the deep processes of oil and gas formation and phenomena, which lead to the formation of cracks, faults, local positive structures in the interval from the foundation to the upper part of the sedimentary cover. The article shows the significance of deep faults in the basement during the formation of sedimentary cover structures. These processes result in a wide range of oil and gas potential of the Pannonian basin deposits. In studying the specifics of tectonic movements and the features of gravitational deposits (conglobreccia), a tectono-sedimentary approach has been developed that can reduce a number of methodological difficulties in creating geological models and concepts. Recommendations are given on the additional study of adjacent structures in order to detect hydrocarbon deposits on the slopes with protrusions of the crystalline basement. Characteristic features of the geological structure are the local volume of the identified oil and gas deposits, small foci of increased productivity and improved filtration properties of reservoirs. Such features of the uneven distribution of sites of different productivity have a significant impact on the success of prospecting and exploration, the effectiveness of development of oil and gas deposits.


2010 ◽  
Vol 2 (1) ◽  
Author(s):  
Suhartati M. Natsir

Foraminifera are generally live in sea water with various sizes. These organisms consist of planktonic and benthic foraminifera. Geological activity on plutonic and volcanic with vomiting magma is transpiring on, and then affects sedimentation and foraminiferal abundance of Ambon Bay. The study was determined to study the abundance and distribution of foraminifera based on the sediment characteristic of Ambon Bay. Sample collected in 2007 of Ambon Bay showed that only 29 samples of 50 samples containing foraminifera. The collected sediments have 86 species of foraminifera, consisting 61 species of benthic foraminifera and 25 species of planktonic foraminifera. The dominant benthic foraminifera in the surface sediment of Ambon bay were Amphistegina lessonii, Ammoniabeccarii,Elphidium craticulatum,Operculina ammonoides and Quinqueloculina parkery. The planktonic foraminifera that were frequently collected from the bay were Globorotalia tumida, Globoquadrina pseudofoliata, Globigerinoides pseudofoliata, Globigerinoides cyclostomus dan Pulleniatina finalis. Generally, the species dwelled as abundant on substrate sand, whereas the areas within substrate mud have no foraminifera lie on them. Keywords: Foraminifera, Abundance, Sediment, Ambon Bay


2021 ◽  
Vol 11 (6) ◽  
pp. 2691
Author(s):  
Nataša Ćuković Ignjatović ◽  
Ana Vranješ ◽  
Dušan Ignjatović ◽  
Dejan Milenić ◽  
Olivera Krunić

The study presented in this paper assessed the multidisciplinary approach of geothermal potential in the area of the most southeastern part of the Pannonian basin, focused on resources utilization. This study aims to present a method for the cascade use of geothermal energy as a source of thermal energy for space heating and cooling and as a resource for balneological purposes. Two particular sites were selected—one in a natural environment; the other within a small settlement. Geothermal resources come from different types of reservoirs having different temperatures and chemical compositions. At the first site, a geothermal spring with a temperature of 20.5 °C is considered for heat pump utilization, while at the second site, a geothermal well with a temperature of 54 °C is suitable for direct use. The calculated thermal power, which can be obtained from geothermal energy is in the range of 300 to 950 kW. The development concept was proposed with an architectural design to enable sustainable energy efficient development of wellness and spa/medical facilities that can be supported by local authorities. The resulting energy heating needs for different scenarios were 16–105 kW, which can be met in full by the use of geothermal energy.


1986 ◽  
Vol 5 (1) ◽  
pp. 5-6
Author(s):  
D. Graham Jenkins ◽  
Erlend Martini

Abstract. Original published evidence indicated an age range of early Lower Miocene to early Middle Miocene for Globigerina silt samples from the English Channel and the Western Approaches. Suggested younger ages for these samples are refuted on the basis of planktonic foraminifera and calcareous nannoplankton.


Sign in / Sign up

Export Citation Format

Share Document