scholarly journals Fly ash from energy production – a waste, byproduct and raw material

2015 ◽  
Vol 31 (4) ◽  
pp. 139-150 ◽  
Author(s):  
Alicja Uliasz-Bocheńczyk ◽  
Maciej Mazurkiewicz ◽  
Eugeniusz Mokrzycki

Abstract Limited use of biomass has been observed in recent years. The processes of electricity and heat production in conventional boilers and fluidized bed boilers generate waste – mainly fly ash. This waste is traditionally used in many industries. The most important are: mining, production of building materials (including cement) and road construction. The use of fly ash in underground mining (suspension technology) is a method of fly ash recovery, which is typical for the Polish industry. The amount of fly ash (10 01 02) and waste (10 01 82) including ashes from fluidized bed boilers in the year 2012 amounted to 1,490.7 thousand tons. For many years, fly ashes from hard coal combustion in conventional boilers has also been used in various production technologies of building materials, such as: cement, concrete, building ceramics and lightweight aggregates. The ashes from hard coal combustion in fluidized bed boilers are also used in the production of cement and autoclaved aerated concrete. Due to extensive economic use, commercial power plants started to reclassify fly ash from hard coal combustion, turning waste into a by-product after meeting the requirements of the Act on waste of 14 December 2012. The ashes from the co-combustion of biomass are also used. The utilization of fly ash from lignite combustion, both from conventional boilers and fluidized bed boilers, is a cause of concern, while the total recovery of fly ash from the combustion of hard coal and lignite has decreased in recent years. For this reason, studies on the use of traditional fly ash technologies such as the production of building materials and new fly ash technologies such as the use as sorbents in power generation and wastewater treatment, as well as on binding CO2 through mineral sequestration in the Carbon Capture and Utilization, are being carried out.

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 474 ◽  
Author(s):  
Marius Gheorghe Miricioiu ◽  
Violeta-Carolina Niculescu

In order to meet the increasing energy demand and to decrease the dependency on coal, environmentally friendly methods for fly ash utilization are required. In this respect, the priority is to identify the fly ash properties and to consider its potential as raw material in the obtaining of high-value materials. The physico-chemical and structural characteristics of the fly ash coming from various worldwide power plants are briefly presented. The fly ash was sampled from power plants where the combustion of lignite and hard coal in pulverized-fuel boilers (PC) and circulating fluidized bed (CFB) boilers was applied. The fly ash has high silica content. Due to this, the fly ash can be considered a potential raw material for the synthesis of nanoporous materials, such as zeolites or mesoporous silica. The samples with the highest content of SiO2 can be used to obtain mesoporous silica materials, such as MCM-41 or SBA-15. The resulting mesoporous silica can be used for removing/capture of CO2 from emissions or for wastewater treatment. The synthesis of various porous materials using wastes would allow a high level of recycling for a sustainable society with low environmental impact.


2015 ◽  
Vol 3 (1) ◽  
pp. 53-56
Author(s):  
Кирил Безгласный ◽  
Kiril Bezglasnyy ◽  
Роман Скориков ◽  
Roman Skorikov ◽  
Артем Шаля ◽  
...  

This article shows the obstacles of using thermal power plant’s ash waste on an industrial scale. The results of determining the activity of fly ash and hydroremoval ash in a mixture with Portland cement are given. Schemes of translation ash from the category of waste with heterogeneous characteristics in the raw material with stable properties are offered. The most rational ways of using ash from thermal power plants in building materials are presented


2018 ◽  
Vol 174 ◽  
pp. 02002
Author(s):  
Elżbieta Janowska-Renkas ◽  
Jolanta Kowalska

The study presents the state of knowledge regarding physical and chemical properties, as well as trends for application of fly ashes from combustion in fluidized bed boilers in building materials. Clinker - slag - ash based binders were tested that contained up to 40 mass % of fly ashes from combustion in fluidized bed boilers. It was demonstrated that fluidized bed combustion fly ashes (FBC fly ash), apart from granular blast furnace slag, could be the ingredient of low clinker Portland cements (ca. 20% by mass). These cements, compared to CEM I Portland cement, have higher water demand and durability in the corrosive environment, and a lower compressive strength value. Based on test results of binders with various content of blast furnace slag and fly ash, the clinker - slag - ash based binder was singled out, which demonstrated the higher durability in the corrosive environment. It was found that production of clinker - slag - ash based binders was possible in the strength class 32.5 even with 30% by mass of FBC fly ash content.


2019 ◽  
Vol 296 ◽  
pp. 180-185
Author(s):  
Martin Nguyen ◽  
Radomír Sokolář

The aim of this article is to characterize the synthesis and properties of forsterite ceramics in dependence on different amount of fly ash in the raw material mixture. Forsterite ceramics is not currently produced in the Czech Republic. Forsterite is used in industry for its high refractoriness and for its coefficient of linear thermal expansion which is close to metals. The primary objective is to synthesize forsterite via solid state reaction using different amounts of fly ash in the raw material mixture. Fly ash is a secondary energy product from coal combustion in power plants. Therefore, it is inexpensive, and its recycling is important for the environment and sustainable development. Slovakia offers the import of talc, magnesite and its products. The article assessed the influence of different amounts of fly ash in the raw material mixture on the synthesis and properties of forsterite in terms of mineralogy, physico-mechanical properties of fired body and refractoriness.


2021 ◽  
Vol 278 ◽  
pp. 01016
Author(s):  
Justyna Woźniak ◽  
Marcel Gurdziel

Rare Earth Elements (REEs), due to their unique properties, are nowadays a desirable raw material, especially in the development of modern technologies. This paper describes a 4-step research methodology for the task of identifying the potential for REE recovery in landfilled fly ash. A literature analysis was performed on their significance, occurrence in both primary and secondary deposits. Opportunities for REE recovery from coal fly ash in conventional power plants were identified and selected technologies were described. Poland, as a country whose energy sector is to a large extent based on coal, has a potential in this respect. Taking into account studies of the Polish Central Statistical Office (GUS) and forecasts of the Polish energy policy, the article determines the approximate value of REE in the waste stream from coal-fired power plants burning hard coal.


2016 ◽  
Vol 692 ◽  
pp. 54-65
Author(s):  
Mohammad Arif Kamal

Fly Ash, known for its proven stability for variety of applications as admixture in cement, concrete, mortar, lime pozzolan mixture (bricks. blocks) etc, is an industrial by-product from Thermal Power Plants with current annual generation of approximately 108 million tones. Fly Ash is not just environment friendly, but is known for its cost effectiveness as well. Its use as a building material helps increase buildings strength and stability. Fly Ash is believed to be a very promising alternative for the industry seeking to meet its development objectives. Fly Ash is being very effectively and economically used in building components such as bricks, doors, door-frames, etc. Fly Ash is also being used in construction of roads and embankments with some design changes. It is also used as raw material in agricultural and wasteland development programmes. The trend is clear, Fly Ash will soon be considered as a resource material and its potential will be fully exploited. Through development & application of technologies, Fly Ash has shifted from “Waste Material” category to “Resource Material” category. The purpose of this paper is to provide an overview of disposal and utilization of Fly Ash and its beneficial potential in application of civil engineering construction as well as others. The focus of this paper is to explore the properties of fly ash as building materials and also aims at the properties of geopolymer concrete, how these distinguish from general characteristics of ordinary Portland cement. It also lay emphasize on durability, properties of fly ash based geopolymer concrete and its advantage when used as a construction material as well.


2006 ◽  
Vol 60 (9-10) ◽  
pp. 245-252 ◽  
Author(s):  
Zvezdana Bascarevic ◽  
Miroslav Komljenovic ◽  
Ljiljana Petrasinovic-Stojkanovic ◽  
Natasa Jovanovic ◽  
Aleksandra Rosic ◽  
...  

In this paper the results of the investigated properties of fly ash from four thermal power plants in Serbia are presented. The physical, chemical, mineralogical and thermal characterization of fly ash was carried out, in order to determine the possibility to utilize this material in the building materials industry, foremost in the cement industry. It was determined that, although there are differences concerning the physical, chemical, and mineralogical characteristics of the investigated samples, they are very similar concerning their thermal characteristics. It was concluded that using fly ash as one of the raw components in the mixture for Portland cement clinker synthesis, not only enables the substitution of natural resources, but it might have a positive effect on the lowering of the sintering temperature.


2021 ◽  
Vol 10 (2) ◽  
pp. 99-103
Author(s):  
Minh Vu Thi Ngoc ◽  
Vo Mai Van ◽  
Tung Cao Tho ◽  
Phuong Nguyen Thi Hong ◽  
Tung Vu Hoang

Although fly ash is a solid waste of coal-fired power plants, it is also a potential raw material for the building materials industry. In the present work, the fly ash collected from Mong Duong I power plant was characterized and used as a substitute for kaolin and feldspar at sixteen percent of a ceramic tile raw mix. The results show that fly ash promotes sintering and helps upgrade wall tiles from unsatisfactory to grade BIIa and floor tiles from grade BIII to grade BIb. These changes have significant economic and environmental implications. However, due to a relatively high firing shrinkage, it is necessary to have appropriate adjustments if applied in industrial production.


Sign in / Sign up

Export Citation Format

Share Document