scholarly journals Impact of Urbanization on Stormwater Runoff from a Small Urban Catchment: Gdańsk Małomiejska Basin Case Study

2014 ◽  
Vol 61 (3-4) ◽  
pp. 141-162 ◽  
Author(s):  
Borys Olechnowicz ◽  
Katarzyna Weinerowska-Bords

AbstractThis paper deals with the impact of different forms of urbanization on the basin outflow. The influence of changes in land cover/use, drainage system development, reservoirs, and alternative ways of stormwater management (green roofs, permeable pavements) on basin runoff was presented in the case of a small urban basin in Gdansk (Poland). Seven variants of area development (in the period of 2000-2012) - three historical and four hypothetical - were analyzed. In each case, runoff calculations for three rainfall scenarios were carried out by means of the Hydrologic Modeling System designed by Hydrologic Engineering Center of the U.S. Army Corps of Engineers (HEC-HMS). The Soil Conservation Service (SCS) Curve Number (CN) method was used for calculations of effective rainfall, the kinematic wave model for those of overland flow, and the Muskingum-Cunge model for those of channel routing. The calculations indicated that urban development had resulted in increased peak discharge and runoff volume and in decreased peak time. On the other hand, a significant reduction in peak values was observed for a relatively small decrease in the normal storage level (NSL) in reservoirs or when green roofs on commercial centers were present. The study confirmed a significant increase in runoff as a result of urbanization and a considerable runoff reduction by simple alternative ways of stormwater management.

2012 ◽  
Vol 38 (4) ◽  
pp. 3-13 ◽  
Author(s):  
Ewa Burszta-Adamiak

Abstract This study presents the results of tests conducted in 2009 and 2010 on experimental sites installed on the roof of the Science and Education Building of the Wroclaw University of Environmental and Life Sciences. The aim of the analysis was to determine the retention capacity of green roofs and the runoff delays and peak runoff reduction during rainfall recorded in Wroclaw conditions. The research shows that green roofs allow to reduce the volume of runoff stormwater in comparison to conventional roofs, that they delay the runoff in time and influence the reduction of the maximum runoff intensity, and thus may limit the impact of stormwater on the stormwater drainage and combined sewage systems.


2011 ◽  
Vol 11 (9) ◽  
pp. 2567-2582 ◽  
Author(s):  
H. Roux ◽  
D. Labat ◽  
P.-A. Garambois ◽  
M.-M. Maubourguet ◽  
J. Chorda ◽  
...  

Abstract. A spatially distributed hydrological model, dedicated to flood simulation, is developed on the basis of physical process representation (infiltration, overland flow, channel routing). Estimation of model parameters requires data concerning topography, soil properties, vegetation and land use. Four parameters are calibrated for the entire catchment using one flood event. Model sensitivity to individual parameters is assessed using Monte-Carlo simulations. Results of this sensitivity analysis with a criterion based on the Nash efficiency coefficient and the error of peak time and runoff are used to calibrate the model. This procedure is tested on the Gardon d'Anduze catchment, located in the Mediterranean zone of southern France. A first validation is conducted using three flood events with different hydrometeorological characteristics. This sensitivity analysis along with validation tests illustrates the predictive capability of the model and points out the possible improvements on the model's structure and parameterization for flash flood forecasting, especially in ungauged basins. Concerning the model structure, results show that water transfer through the subsurface zone also contributes to the hydrograph response to an extreme event, especially during the recession period. Maps of soil saturation emphasize the impact of rainfall and soil properties variability on these dynamics. Adding a subsurface flow component in the simulation also greatly impacts the spatial distribution of soil saturation and shows the importance of the drainage network. Measures of such distributed variables would help discriminating between different possible model structures.


Author(s):  
Zane KALVITE ◽  
Zane LIBIETE ◽  
Arta BARDULE Arta BARDULE

Rise in human population, industrialization, urbanization, intensified agriculture and forestry pose considerable risks to water supply and quality both on global and regional scale. While freshwater resources are abundant in Latvia, during recent years increased attention has been devoted to water quality in relation to anthropogenic impacts. Forest cover in Latvia equals 52% and forest management and forest infrastructure building and maintenance are among the activities that may, directly or indirectly, affect water quality in headwater catchments. Sedimentation, eutrophication and export of hazardous substances, especially mercury (Hg), are of highest concern. To address these topics, several initiatives have started recently. In 2011, cooperation programme between Latvian State Forest Research Institute (LSFRI) “Silava” and JSC “Latvia’s State Forests” was launched to evaluate the impact of forest management on the environment. This programme included research on the efficiency of water protection structures used at drainage system maintenance (sedimentation ponds, overland flow) and regeneration felling (bufferzones). In 2016, within the second stage of this cooperation programme, a study on the impact of forest management on water quality (forest road construction, drainage system maintenance, felling) was started on a catchment scale. Since 2016 LSFRI Silava is partner in the Interreg Baltic Sea Region Programme project “Water management in Baltic forests”. By focusing on drainage systems, riparian zones and beaver activity, this project aims at reducing nutrient and Hg export from forestry sites to streams and lakes. While this project mostly has a demonstration character, it will also offer novel results on Hg and methylmercury (MeHg) concentrations in beaver ponds in all participating states. This paper aims at summarizing most important challenges related to the impact of forest management on water quality and corresponding recent initiatives striving to offer solutions.


Author(s):  
Zongxue Xu ◽  
Gang Zhao

Abstract. China is undergoing rapid urbanization during the past decades. For example, the proportion of urban population in Beijing has increased from 57.6 % in 1980 to 86.3 % in 2013. Rapid urbanization has an adverse impact on the urban rainfall-runoff processes, which may result in the increase of urban flood risk. In the present study, the major purpose is to investigate the impact of land use/cover change on hydrological processes. The intensive human activities, such as the increase of impervious area, changes of river network morphology, construction of drainage system and water transfer, were considered in this study. Landsat TM images were adopted to monitor urbanization process based on Urban Land-use Index (ULI). The SWMM model considering different urbanized scenarios and anthropogenic disturbance was developed. The measured streamflow data was used for model calibration and validation. Precipitation with different return periods was taken as model input to analyse the changes of flood characteristics under different urbanized scenarios. The results indicated that SWMM provided a good estimation for storms under different urbanized scenarios. The volume of surface runoff after urbanization was 3.5 times greater than that before urbanization; the coefficient of runoff changed from 0.12 to 0.41, and the ratio of infiltration decreased from 88 to 60 %. After urbanization, the time of overland flow concentration increased while the time of river concentration decreased; the peak time did not show much difference in this study. It was found that the peak flow of 20-year return-period after urbanization is greater than that of 100-year return-period before urbanization. The amplification effect of urbanization on flood is significant, resulting in an increase of the flooding risk. These effects are especially noticeable for extreme precipitation. The results in this study will provide technical support for the planning and management of urban storm water and the evaluation on Low Impact Development (LID) measures.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2559
Author(s):  
Craig Lashford ◽  
Susanne Charlesworth ◽  
Frank Warwick ◽  
Matthew Blackett

This novel research models the impact that commonly used sustainable drainage systems (SuDS) have on runoff, and compare this to their land take. As land take is consistently cited as a key barrier to the wider implementation of SuDS, it is essential to understand the possible runoff reduction in relation to the area they take up. SuDS management trains consisting of different combinations of detention basins, green roofs, porous pavement and swales were designed in MicroDrainage. In this study, this is modelled against the 1% Annual Exceedance Potential storm (over 30, 60, 90, 120, 360 and 720 min, under different infiltration scenarios), to determine the possible runoff reduction of each device. Detention basins were consistently the most effective regarding maximum runoff reduction for the land they take (0.419 L/s/m2), with porous pavement the second most effective, achieving 0.145 L/s/m2. As both green roofs (20.34%) and porous pavement (6.76%) account for land that would traditionally be impermeable, there is no net-loss of land compared to a traditional drainage approach. Consequently, although the modelled SuDS management train accounts for 34.86% of the total site, just 7.76% of the land is lost to SuDS, whilst managing flooding for all modelled rainfall and infiltration scenarios.


Author(s):  
M. S. Adiaha ◽  
E. E. Oku

The continual destruction of the environment due to anthropogenic and natural factors has played a role in increasing global flood disaster, acting like a hindrance in meeting the target of global sustainability. Flood has been looked at as an overland flow of water into land which is naturally dry after filling-up of natural open and close water holding bodies. The impact caused by flood disaster has been recorded and include death of humans and animals, apart from the massive destruction of properties and infrastructures, thereby limiting human development. Looking at land and water as a scare and unrenewable natural resources, then it follows that effective management of land and water resources is one way a society can maximize it economic growth and development. Studying the flux of fluid especially water into the soil profile is a great approach in investigating a soil towards the tendency for flooding. Infiltration is the key to soil water conservation and management. The ability of the soil to act as a sponge in-other to cut-down the raising cases of loss of lives and property with associated impact due to flood disaster lies on its infiltration capacity. The study evaluated the strength of soils of University of Abuja Flood meadows to absorb hydrological shock as flood. Outcome of the study revealed that dry land of University of Abuja flood meadow is able to absorbed reasonable quantity of water as flood, with coefficient of variability value of (CV=12%) for the hydraulic conductivity of the site. While bulk density of the area was found to be (2.30 g cm-3) and Porosity of (8%). Conclusion of the study states that most of the sites investigated have a weak hydrological potential in regards to adsorbing and transporting of the water down the soil profile, hence the area should be put to vegetation cover to reduce the flooding impact, alongside an advance drainage system in the area.  


2020 ◽  
Author(s):  
Vladimír Hamouz ◽  
Vincent Pons ◽  
Edvard Sivertsen ◽  
Gema Sakti Raspati ◽  
Jean-Luc Bertrand-Krajewski ◽  
...  

Abstract Rooftops cover a large percentage of land area in urban areas, which can potentially be used for stormwater purposes. Seeking adaptation strategies, there is an increasing interest in utilising green roofs for stormwater management. However, the impact of extreme rainfall on the hydrological performance of green roofs and their design implications remain challenging to quantify. In this study, a method was developed to assess the detention performance of a detention-based green roof (underlaid with 100 mm of expanded clay) for current and future climate conditions under extreme precipitation using an artificial rainfall generator. The green roof runoff was found to be more sensitive to the initial water content than the hyetograph shape. The green roof outperformed the black roof in terms of all performance indicators (time of concentration, centroid delay, T50 or peak attenuation). While the time of concentration for the reference black roof was within 5 minutes independently of rainfall intensity, for the green roof was extrapolated between 30 and 90 minutes with intensity from 0.8 to 2.5 mm/min. Adding a layer of expanded clay under the green roof substrate provided a significant improvement to the detention performance under extreme precipitation in current and future climate conditions.


1982 ◽  
Vol 9 (3) ◽  
pp. 367-377 ◽  
Author(s):  
Ivan Muzik

Development of a lignite deposit at Onakawana in northeastern Ontario requires extensive drainage of the muskeg blanketing the proposed mine area. Dewatering of the muskeg is necessary prior to its stripping. Muskeg drainage systems must also efficiently handle surface runoff due to rainfall and snowmelt. A hydrological analysis of the muskeg and a hydrologic design for its drainage system are presented. Surface runoff quantities were estimated by means of the rational method and a kinematic wave model of overland flow. A modified Glover–Dumm equation was used to calculate the diteh spacing required for dewatering. A preliminary drainage system layout is discussed.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Ronja Iffland ◽  
Kristian Förster ◽  
Daniel Westerholt ◽  
María Herminia Pesci ◽  
Gilbert Lösken

In increasingly expanding cities, roofs are still largely unused areas to counteract the negative impacts of urbanization on the water balance and to reduce flooding. To estimate the effect of green roofs as a sustainable low impact development (LID) technique on the building scale, different approaches to predict the runoff are carried out. In hydrological modelling, representing vegetation feedback on evapotranspiration (ET) is still considered challenging. In this research article, the focus is on improving the representation of the coupled soil–vegetation system of green roofs. Relevant data to calibrate and validate model representations were obtained from an existing field campaign comprising several green roof test plots with different characteristics. A coupled model, utilizing both the Penman–Monteith equation to estimate ET and the software EPA stormwater management model (SWMM) to calculate the runoff, was set up. Through the application of an automatic calibration procedure, we demonstrate that this coupled modelling approach (Kling–Gupta efficiency KGE = 0.88) outperforms the standard ET representation in EPA SWMM (KGE = −0.35), whilst providing a consistent and robust parameter set across all green roof configurations. Moreover, through a global sensitivity analysis, the impact of changes in model parameters was quantified in order to aid modelers in simplifying their parameterization of EPA SWMM. Finally, an improved model using the Penman–Monteith equation and various recommendations are presented.


2014 ◽  
Vol 70 (5) ◽  
pp. 858-864 ◽  
Author(s):  
Haijun Yu ◽  
Guoru Huang ◽  
Chuanhao Wu

The stormwater management model (SWMM) was adapted and calibrated to Jinan, a typical piedmont city in China, to verify the large-scale applicability of the model to piedmont cities. Fourteen storms were used for model calibration and validation. The calibrated model predicted the measured data with satisfactory accuracy and reliability. A sensitivity analysis was then conducted to evaluate the impact of the model parameters; it showed that: (1) the model outputs were most sensitive to imperviousness and conduit roughness; and (2) infiltration parameters and depression storage play an important role in total runoff and peak flow. The urban drainage system of Jinan was assessed using urban design storms with the calibrated model, and the effects of engineered flood control measures were evaluated. The overall results demonstrate that SWMM is applicable on a large scale to piedmont cities.


Sign in / Sign up

Export Citation Format

Share Document