Inhibiting wood-water interactions by hydrothermal hemicellulose extraction combined with furfurylation

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yang Tiantian ◽  
Erni Ma ◽  
Changtong Mei ◽  
Jinzhen Cao

Abstract Wood-water interactions affect durability and performance of wood products, such as dimensional stability and biodegradation. To upgrade wood, a combined modification via hemicellulose extraction and furfurylation was proposed to inhibit wood-water interactions. More intense hemicellulose extraction caused larger voids and led to higher pore volume. The increment of porosity resulted in more uniform distribution of polymerized furfural resin in cells, as indicated by scanning electron microscopic and confocal laser scanning microscopic observations. The combined modification greatly reduced surface wettability with an increase of water contact angle (CA) of over 134% at 100 s. With hemicellulose extraction, polymerized furfural resin partially occupied the accommodation initially for water molecules and reduced accessible sorption sites, causing water absorption (WA) of wood to decrease by over 30% after soaking in water for 768 h. Dynamic moisture sorption was weakened after combined modification, and the moderate hemicellulose extraction combined with furfurylation reduced the moisture content by over 50% due to incorporative changes of chemical sorption sites and physical porosity. The results confirmed the efficiency of the combined modification in inhibiting wood-water interactions and indicated the importance to accurately control hemicellulose content during modification. This study could provide useful information for sustainably enhancing wood performance and upgrading low-quality wood.

2002 ◽  
Vol 8 (2) ◽  
pp. 116-133 ◽  
Author(s):  
Shigenori Okada ◽  
Ralph M. Albrecht ◽  
Seyedhossein Aharinejad ◽  
Dean E. Schraufnagel

Modulation of lymphocyte flow in the lymphatic compartment of the lymph node may serve, in part, to promote lymphocyte sensitization during an antigenic challenge. This study was undertaken to show where this might occur by examining the structural relationships of the intranodal lymphatic pathways, blood vessels, and connective tissue support with respect to lymphocyte and lymph flow. Differently stained plastic resins were injected into the blood vessels and lymphatics of the submandibular lymph node and visualized with a confocal laser scanning microscope. The specimens were corroded to study the three-dimensional cast structures by scanning electron microscopy. Alkali digestion was also used to prepare the reticular fiber network in the lymph node for scanning electron microscopic examination. At the hilus of the node, two to three arteries gave off arterioles running in medullary cords towards the cortex. The medullary cords, the periphery of the deep cortex, and the perifollicular zones had dense capillary networks. In contrast, the center of the follicle and the center of the deep cortex were less highly vascularized. High-endothelial venules were restricted to the perifollicular zone and the periphery of the deep cortex. At the cortico-medullary boundary, they abruptly transformed into medullary venules with a normal endothelium. The marginal sinus of the lymph node was crossed by thick reticular fibers that arose from the inner sheets of the capsule. The lymph pathway went through the marginal sinus, into the trabecular sinus, to the cortical perifollicular sinus, the dense lymphatic sinus around the deep cortex, and finally into the medullary sinus. At present, the exact functional significance of the complex lymph node lymphatic architecture is not clear. However, the highly organized structural organization may play a significant role in regulating and directing lymphocyte flow to facilitate antigen presentation.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6024
Author(s):  
Sandra Gaiser ◽  
Urs Schütz ◽  
Patrick Rupper ◽  
Dirk Hegemann

The concept of depositing solid films on low-vapor pressure liquids is introduced and developed into a top-down approach to functionalize surfaces by attaching liquid polyethylene glycol (PEG). Solid-liquid gradients were formed by low-pressure plasma treatment yielding cross-linking and/or deposition of a plasma polymer film subsequently bound to a flexible polydimethylsiloxane (PDMS) backing. The analysis via optical transmission spectroscopy (OTS), optical, confocal laser scanning (CLSM) and scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) as well as by water contact angle (WCA) measurements revealed correlations between optical appearance, chemical composition and surface properties of the resulting water absorbing, covalently bound PEG-functionalized surfaces. Requirements for plasma polymer film deposition on low-vapor pressure liquids and effective surface functionalization are defined. Namely, the thickness of the liquid PEG substrate was a crucial parameter for successful film growth and covalent attachment of PEG. The presented method is a practicable approach for the production of functional surfaces featuring long-lasting strong hydrophilic properties, making them predestined for non-fouling or low-friction applications.


2012 ◽  
Vol 487 ◽  
pp. 730-734 ◽  
Author(s):  
Chang Jiang Pan ◽  
Yu Dong Nie ◽  
Yun Xiao Dong

In this paper, two kinds of stamps (squares (a×a)) separated by spacing b, the values of a and b were varied from 2.5 µm to 50 µm), i.e. positive and negative stamps, were prepared. The stamps inked with the rhodamine-labeled bovine serum albumin (BSA) were then microcontacted with the aldehyde-functionalized titanium surfaces. Water contact angle and X-ray photoelectron spectrum (XPS) indicated that BSA can be covalently immobilized on aldehyde modified titanium surface by microcontact printing. The experimental results of CLSM showed that the patterns with resolution from 2.5 µm to 50 µm were obtained successfully. Both positive stamp and negative stamp were deformed when the value of a was less than or equal to 5 µm, which resulted in replication errors. Furthermore, the larger spacing (50 µm) resulted in stamp collapse when the value a of the positive stamp was less than or equal to 10 µm, leading to whole fluorescence on substrates.


2015 ◽  
Vol 1130 ◽  
pp. 118-122 ◽  
Author(s):  
Sören Bellenberg ◽  
Dieu Huynh ◽  
Laura Castro ◽  
Maria Boretska ◽  
Wolfgang Sand ◽  
...  

Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (O2-) and hydroxyl radicals (OH.) are known to be formed on the surface of metal sulfides in aqueous solution under oxic and anoxic conditions. Consequently bacteria which have not been adapted to their presence are metabolically inhibited [1], presumably due to the presence of these ROS. Pyrite-grown cells ofAcidithiobacillus ferrooxidansT, in contrast to iron (II)-grown cells, were able to oxidize iron (II)-ions or pyrite after 24 h starvation and contact with 1 mM externally added H2O2. In this study, similar results were obtained withAcidiferrobactersp. SPIII/3. However,Acidithiobacillus ferrivoransSS3 showed the highest tolerance towards contact with H2O2, whileLeptospirillum ferrooxidansDSM 2391 was most sensitive. Similar results were obtained after exposure to defined doses of gamma radiation, which cleaves water molecules and generates ROS. In this study members of the three aforementioned genera of mineral-oxidizing bacteria were compared regarding their ability to survive, colonize pyrite and to oxidize iron (II)-ions after exposure to different concentrations of H2O2. Pyrite colonization was studied after exposure to endogenous ROS formed on pyrite or after external addition of H2O2using confocal laser scanning microscopy (CLSM).


2007 ◽  
Vol 56 (3) ◽  
pp. 253-265 ◽  
Author(s):  
Miho Oyasu ◽  
Mineko Fujimiya ◽  
Kaori Kashiwagi ◽  
Shiho Ohmori ◽  
Hirotsugu Imaeda ◽  
...  

We examined the precise intracellular translocation of γ subtype of protein kinase C (γPKC) after various extracellular stimuli using confocal laser-scanning fluorescent microscopy (CLSM) and immunogold electron microscopy. By CLSM, treatment with 12- O-tetradecanoylphorbol-13-acetate (TPA) resulted in a slow and irreversible accumulation of green fluorescent protein (GFP)-tagged γPKC (γPKC–GFP) on the plasma membrane. In contrast, treatment with Ca2+ ionophore and activation of purinergic or NMDA receptors induced a rapid and transient membrane translocation of γPKC–GFP. Although each stimulus resulted in PKC localization at the plasma membrane, electron microscopy revealed that γPKC showed a subtle but significantly different localization depending on stimulation. Whereas TPA and UTP induced a sustained localization of γPKC–GFP on the plasma membrane, Ca2+ ionophore and NMDA rapidly translocated γPKC–GFP to the plasma membrane and then restricted γPKC–GFP in submembranous area (<500 nm from the plasma membrane). These results suggest that Ca2+ influx alone induced the association of γPKC with the plasma membrane for only a moment and then located this enzyme at a proper distance in a touch-and-go manner, whereas diacylglycerol or TPA tightly anchored this enzyme on the plasma membrane. The distinct subcellular targeting of γPKC in response to various stimuli suggests a novel mechanism for PKC activation.


1994 ◽  
Vol 107 (7) ◽  
pp. 1929-1934 ◽  
Author(s):  
U. Meindl ◽  
D. Zhang ◽  
P.K. Hepler

Rhodamine-phalloidin or FITC-phalloidin has been injected in small amounts into living, developing cells of Micrasterias denticulata and the stained microfilaments visualized by confocal laser scanning microscopy. The results reveal that two different actin filament systems are present in a growing cell: a cortical actin network that covers the inner surface of the cell and is extended far into the tips of the lobes in both the growing and the nongrowing semicell; it is also associated with the surface of the chloroplast. The second actin system ensheathes the nucleus at the isthmus-facing side during nuclear migration. Its arrangement corresponds to that of the microtubule system that has been described in earlier electron microscopic investigations. The spatial correspondence between the distribution of actin filaments and microtubules suggests a cooperation between both cytoskeleton elements in generating the motive force for nuclear migration. The function of the cortical actin network is not yet clear. It may be involved in processes like transport and fusion of secretory vesicles and may also function in shaping and anchoring the chloroplast.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Lena M. Wallenhorst ◽  
Sebastian Dahle ◽  
Matej Vovk ◽  
Lisa Wurlitzer ◽  
Leander Loewenthal ◽  
...  

We report on the characteristics of aluminium trihydrate filled poly(methyl methacrylate) composite (PMMA/ATH) coatings realised by plasma deposition at atmospheric pressure. For this purpose, PMMA/ATH powder was fed to a plasma jet where the process and carrier gas was compressed air. The deposited coatings were investigated by X-ray photoelectron spectroscopy and water contact angle measurements. Further, the raw material was characterised before deposition. It was found that, with respect to the raw material, aluminium was uncovered in the course of the plasma deposition process which can be explained by plasma-induced etching of the PMMA matrix. As a result, the wettability of plasma-deposited PMMA/ATH was significantly increased. Even though a uniform coating film could not be realised as ascertained by confocal laser scanning microscopy, the deposited coatings feature notably enhanced characteristics which could be advantageous for further processing.


Sign in / Sign up

Export Citation Format

Share Document