scholarly journals Resistance of thermo-hygro-mechanically densified wood to colonisation and degradation by brown-rot fungi

Holzforschung ◽  
2005 ◽  
Vol 59 (3) ◽  
pp. 358-363 ◽  
Author(s):  
Francis W.M.R. Schwarze ◽  
Melanie Spycher

Abstract Colonisation and wood degradation by three brown-rot fungi, Coniophora puteana, Gloeophyllum trabeum and Poria placenta, were studied in wood of Norway spruce (Picea abies) subjected to three different treatments: hygro-thermal (TH) (160 and 180°C), mechanical densification and thermo-hygro-mechanical (THM) treatment including densification and post-treatment under saturated steam conditions at different temperatures (140, 160 and 180°C). The weight loss induced by all three fungi was lowest in THM-densified wood post-treated at 180°C. Highest weight losses were recorded for controls and TH-treated wood. Fungal colonisation varied in its intensity, depending on the treatment applied to the wood. Hyphal growth in controls and TH-treated wood was abundant, whereas in densified and THM-densified wood it was sparse and confined predominantly to the cell lumina of earlywood tracheids. Also, penetration of large-diameter hyphae and associated degradation in THM-densified wood was impeded by occlusion of the lumina, associated with irreversible compression (loss in shape memory). In contrast to C. puteana and P. placenta, which showed typical brown-rot behaviour, G. trabeum frequently showed hyphal tunnelling within the secondary walls of tracheids and xylem ray parenchyma of controls and thermally treated wood. Such growth was never observed in THM-densified wood post-treated at 180°C.

Holzforschung ◽  
2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Oleksandr Skyba ◽  
Peter Niemz ◽  
Francis W.M.R. Schwarze

AbstractColonisation and degradation by the white rot fungi,Trametes versicolorandT. pubescens, were studied in wood of Norway spruce and beech subjected to three different treatments: (1) hygro-thermal treatment (160°C and 180°C), (2) mechanical densification, and (3) thermo-hygro-mechanical (THM) treatment including densification and post-treatment at different temperatures (140°C, 160°C and 180°C). The weight losses induced by the fungi were lowest in THM-densified woods. However, volume related numerical indicators for decay susceptibility did not show any significant improvements of THM-densified woods against both fungi. Analysis of the chemical composition of treated wood species revealed slight alterations in the content of polysaccharides and lignin. White rot fungi circumvented conditions restricting hyphal growth within the occluded tracheid lumina by hyphal tunnelling in the secondary walls of fibre tracheids in beech or by forming bore holes that transversally penetrated cell walls of earlywood tracheids in THM-densified spruce. The studies indicate that THM-densified beech and Norway spruce wood may have some potential in utility class 3 but are inappropriate for use in utility class 4.


Holzforschung ◽  
2008 ◽  
Vol 62 (3) ◽  
Author(s):  
Oleksandr Skyba ◽  
Peter Niemz ◽  
Francis W.M.R. Schwarze

Abstract Thermo-hygro-mechanical (THM)-densified wood is more resistant to colonisation and degradation by brown-rot fungi than untreated wood. Colonisation and degradation by soft-rot fungi was investigated in treated Norway spruce (Picea abies) and treated beech (Fagus sylvatica) to assess their suitability for utility class 4. Three different treatments were applied: thermal-hygro (TH) treatment, mechanical densification and THM-treatment including densification and post-treatment under saturated steam conditions at different temperatures. For comparison, additional wood specimens were treated with two concentrations of a chromium-copper (CC) wood preservative. After 32 weeks incubation, weight losses induced by soft-rot fungi were lowest in wood treated with CC. Highest weight losses were recorded from TH-treated wood, in which soft-rot erosion attack (type 2) was exclusively observed in spruce. In comparison to controls, significantly lower weight losses by soft-rot fungi were recorded in THM-treated spruce wood, but no such differences were found in beech wood. Microscopical examination showed that in THM-treated wood of spruce, soft-rot type 1 commenced from the outer wood surfaces and cavity formation was not found in deeper regions of the wood samples. THM-treated beech wood was more susceptible to degradation than that of spruce which can be partly explained by the higher syringyl lignin content in beech wood, which is more susceptible to all kinds of degradation. Hyphal colonisation and soft-rot was facilitated within deeper regions of beech wood mainly in the non-occluded lumina of parenchyma cells in multiseriate xylem rays. It can be concluded that TH-treated spruce wood and THM-treated beech wood is susceptible to soft-rot and therefore inappropriate for utility class 4.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Darrel Nicholas ◽  
Amy Rowlen ◽  
David Milsted

Treated wood timbers employed in ground contact are often installed with a cement collar to firmly fix the structural wood post in place. Few prior studies have determined the effect of concrete on decay efficacy on treated wood, however. Treated wood nominal 4 × 4 posts were installed at four locations, with the upper ground-contact portion of each post encased in concrete, and the samples removed at various times for pH measurements. The wood alkalinity quickly increased at all four sites for the portion of the treated wood in concrete contact compared to the wood in ground contact without concrete. In laboratory decay tests employing three decay fungi, untreated wood which was first exposed or unexposed to concrete had no consistent difference in decay susceptibility. For wood treated with three different commercial copper/organic systems, cement exposure had no effect on wood treated with an amine copper azole system, while treatment with amine copper quat showed a statistically significant fungal efficacy enhancement for cement-exposed samples with both copper-tolerant fungi. Conversely, with a micronized copper azole preservative, cement exposure resulted in reduced fungal efficacy compared to treated samples which were not cement-exposed for all three decay fungi.


IAWA Journal ◽  
1993 ◽  
Vol 14 (2) ◽  
pp. 127-138 ◽  
Author(s):  
W. Wayne Wilcox

Early stages of decay by two brown-rot fungi in two woods were studied by light and scanning electron microscopy. The earliest diagnostic feature to appear was hyphae in the earlywood lumina. The earliest effect on cell walls was the loss of birefringence in the earlywood; Poria placenta (syn. Postia placenta) caused this loss at the earliest stage of decay observed, in both Douglas-fir and white fir, while Gloeophyllum trabeum caused significant weight loss before loss of birefringence was visible. Attack on the latewood progressed from the earlywood, and was different in pattern among the wood/fungus combinations. Hyphal and bore hole diameter increased throughout the early progression of decay and would be useful in evaluating the stage of decay, if the starting diameter of hyphae could be determined. Separation between cells was not observed until moderate stages of decay and, therefore, was not useful in diagnosing early stages of decay.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 1112 ◽  
Author(s):  
A. R. Shaikhutdinova ◽  
R. R. Safin ◽  
F. V. Nazipova ◽  
S. R. Mukhametzyanov

This paper proposes the use of an array of heat-treated wood of various species to make parametric furniture for the purpose of operation in the exterior, and on objects in conditions of high humidity. The dependence of change in the color range of thermowoods depending on the temperature and duration of treatment is presented. Experiments were carried out to study the biological stability of thermally modified wood treated by various technologies including: vacuum-convective thermal modification in superheated steam, convective thermal modification in high-pressure saturated steam, as well as in hydrophobic liquids, in flue gas and vacuum-conductive thermal-modifying. The degree of resistance of wood was determined, which allows to conclude that the mass losses of heat-treated specimens caused by the destructive action of fungi are significantly lower compared to untreated ones. The researchwas conducted to determine the numerical characteristics of microroughness of the polished surface of wood, thermally modified at different temperatures.   


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3758
Author(s):  
Miloš Pánek ◽  
Vlastimil Borůvka ◽  
Jana Nábělková ◽  
Kristýna Šimůnková ◽  
Aleš Zeidler ◽  
...  

In the future, we can expect increased requirements to the health and ecological integrity of biocides used for the protection of wood against bio-attacks, and it is therefore necessary to search for and thoroughly test new active substances. Caffeine has been shown to have biocidal efficacy against wood-destroying fungi, moulds and insects. The aim of the research was to determine whether the effectiveness of caffeine, as a fungicide of natural origin, is affected by a different type of treated wood. Norway spruce mature wood (Picea abies), Scots pine sapwood (Pinus sylvestris), and European beech wood (Fagus sylvatica) were tested in this work. The samples were treated using long-term dipping technology or coating (according to EN 152:2012) and then tested against selected wood-destroying brown rot fungi according to the standard EN 839:2015, wood-staining fungi according to EN 152:2012, and against mould growth according to EN 15457:2015. The penetration of caffeine solution into wood depth was also evaluated using liquid extraction chromatography, as well as the effect of the treatment used on selected physical and mechanical properties of wood. The test results showed that the type of wood used and the specific type of wood-degrading agent had a significant effect on the effectiveness of caffeine protection. The most resistant wood was the treated spruce, whereas the most susceptible to deterioration was the treated white pine and beech wood. The results of the work showed that caffeine treatment is effective against wood-destroying fungi at a concentration of 2%, and at 1% in some of the tested cases. It can be used as an ecologically acceptable short-term protection alternative against wood-staining fungi in lumber warehouses and is also partially effective against moulds. It also does not have negative effects on changes in the physical and mechanical properties of the tested wood species.


Holzforschung ◽  
2009 ◽  
Vol 63 (3) ◽  
Author(s):  
Pradeep Verma ◽  
Ulrich Junga ◽  
Holger Militz ◽  
Carsten Mai

AbstractThe resistance of beech and pine wood blocks treated with 1,3-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) againstTrametes versicolorandConiophora puteanaincreased with increasing weight percent gain (WPG) of DMDHEU. Full protection [mass loss (ML) below 3%] was reached at WPGs of approximately 15% (beech) and 10% (pine). Untreated and DMDHEU treated blocks were infiltrated with nutrients and thiamine prior to fungal incubation and it was observed whether the destruction or removal of nutrients and vitamins during the modification process has an influence on the ML caused by the fungi. This study revealed that no considerable differences were found. Then, the cell wall integrity was partly destroyed by milling and the decay of the fine wood powder filled into steel mesh bags was compared to that of wood mini-blocks. The purpose of this study was to examine whether the effects of surface area, cell wall bulking, and reduction in micro-void diameters play a role in decay resistance. The ML caused by the fungi, however, also decreased with increasing WPG and showed comparable patterns similar to the case of mini-blocks. ML of powder bearing the highest WPG appeared to be caused by losses in DMDHEU during fungal incubation. For brown rotted wood, the infrared absorption ratios at 1030 cm-1and 1505 cm-1revealed decreasing decay of polysaccharides with increasing WPG of treated wood.


2021 ◽  
Vol 45 ◽  
Author(s):  
Carolina Aparecida Barros Oliveira ◽  
Karina Aparecida de Oliveira ◽  
Julio Cesar Molina ◽  
Vinicius Borges de Moura Aquino ◽  
André Luis Christoforo

ABSTRACT This study aimed to evaluate the influence of commercial thermal treatment on Eucalyptus grandis considering its physical, chemical, and mechanical properties. The wood samples were heat-treated in an autoclave with saturated steam and pressure application at four different temperatures: 155, 165, 175, and 185 ºC. The physical, chemical, and mechanical properties were altered due to the heat treatment. The extractives content varied between 6.06% and 28.75%; lignin between 28.93% and 37.96%; holocellulose between 65.01% and 38.12%. The mechanical properties reduced significantly with the increase of the heat treatment temperature. Through the set of data obtained, it was possible to generate significant and high precision regression models capable of estimating such properties for heat treatment temperatures not studied experimentally, enabling the determination of the most suitable temperature of heat treatment to achieve a certain property value of the treated wood.


2019 ◽  
Vol 49 (2) ◽  
pp. 145-153 ◽  
Author(s):  
Shan Gao ◽  
Xiaoquan Yue ◽  
Lihai Wang

There have been limited efforts to investigate the association between wood decay and electrical resistance; consequently, we have examined the change in the electrical resistance of wood progressively decayed by brown-rot fungi to elucidate the effect of the degree of decay. The rate of mass loss of wood was used as an indicator of the degree of fungal decay. The changes in the moisture content and ion concentrations were measured at various decay stages. The results showed a significant difference in the electrical resistances of sound wood and fungal-treated wood after 24 weeks. The electrical resistance significantly decreased with the exposure time. The degree of decay increased as the mass loss increased, resulting in the severe breakdown of cell walls and the accumulation of fungal mycelia. Empirical models related to the rate of mass loss and the percent decrease in the electrical resistance were established. The moisture content and cation concentrations increased to various degrees in decayed wood. This increase in the cation concentration was considered to play a dominant role in the decrease in the electrical resistance. The study results provide valuable information for developing an electrical resistance based method coupled with ion content measurements for incipient wood decay detection.


Sign in / Sign up

Export Citation Format

Share Document