scholarly journals Efficacy of Caffeine Treatment for Wood Protection—Influence of Wood and Fungi Species

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3758
Author(s):  
Miloš Pánek ◽  
Vlastimil Borůvka ◽  
Jana Nábělková ◽  
Kristýna Šimůnková ◽  
Aleš Zeidler ◽  
...  

In the future, we can expect increased requirements to the health and ecological integrity of biocides used for the protection of wood against bio-attacks, and it is therefore necessary to search for and thoroughly test new active substances. Caffeine has been shown to have biocidal efficacy against wood-destroying fungi, moulds and insects. The aim of the research was to determine whether the effectiveness of caffeine, as a fungicide of natural origin, is affected by a different type of treated wood. Norway spruce mature wood (Picea abies), Scots pine sapwood (Pinus sylvestris), and European beech wood (Fagus sylvatica) were tested in this work. The samples were treated using long-term dipping technology or coating (according to EN 152:2012) and then tested against selected wood-destroying brown rot fungi according to the standard EN 839:2015, wood-staining fungi according to EN 152:2012, and against mould growth according to EN 15457:2015. The penetration of caffeine solution into wood depth was also evaluated using liquid extraction chromatography, as well as the effect of the treatment used on selected physical and mechanical properties of wood. The test results showed that the type of wood used and the specific type of wood-degrading agent had a significant effect on the effectiveness of caffeine protection. The most resistant wood was the treated spruce, whereas the most susceptible to deterioration was the treated white pine and beech wood. The results of the work showed that caffeine treatment is effective against wood-destroying fungi at a concentration of 2%, and at 1% in some of the tested cases. It can be used as an ecologically acceptable short-term protection alternative against wood-staining fungi in lumber warehouses and is also partially effective against moulds. It also does not have negative effects on changes in the physical and mechanical properties of the tested wood species.

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1102 ◽  
Author(s):  
Ladislav Reinprecht ◽  
Miroslav Repák

The European beech (Fagus sylvatica L.) wood was thermally modified in the presence of paraffin at the temperatures of 190 or 210 °C for 1, 2, 3 or 4 h. A significant increase in its resistance to the brown-rot fungus Poria placenta (by 71.4%–98.4%) and the white-rot fungus Trametes versicolor (by 50.1%–99.5%) was observed as a result of all modification modes. However, an increase in the resistance of beech wood surfaces to the mold Aspergillus niger was achieved only under more severe modification regimes taking 4 h at 190 or 210 °C. Water resistance of paraffin-thermally modified beech wood improved—soaking reduced by 30.2%–35.8% and volume swelling by 26.8%–62.9% after 336 h of exposure in water. On the contrary, its mechanical properties worsened—impact bending strength decreased by 17.8%–48.3% and Brinell hardness by 2.4%–63.9%.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1234
Author(s):  
Alejandro Lucia ◽  
Mónica Murace ◽  
Gastón Sartor ◽  
Gabriel Keil ◽  
Ricardo Cámera ◽  
...  

Eugenol in water nanoemulsions loaded with tebuconazole appear as a very promising alternative formulations for wood protection against xylophagous fungi that are the main species responsible for different rots in wood structures. The dispersions as prepared and upon dilution (impregnation mixtures) were characterized by the apparent hydrodynamic diameter distribution of the oil droplets loaded with tebuconazole and their long-term stability. The impregnation mixtures were applied on wood of Populus canadensis I-214 clone by using a pressure-vacuum system, and the effectiveness against fungal degradation by Gloeophyllum sepiarium and Pycnoporus sanguineus fungi was determined. The retention of tebuconazole in wood was about 40% of the amount contained in the impregnation mixtures. The results showed that the impregnation process leads to a long-term antifungal protection to the wood, with the mass loss after 16 weeks being reduced more than 10 times in relation to the control (untreated poplar wood) and the reference wood (untreated beech wood).


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1538 ◽  
Author(s):  
Siavash Bayani ◽  
Hamid R. Taghiyari ◽  
Antonios N. Papadopoulos

The aim of this study was to investigate the physical and mechanical properties of thermally modified beech wood impregnated with silver nano-suspension and to examine their relationship with the crystallinity of cellulose. Specimens were impregnated with a 400 ppm nanosilver suspension (NS); at least, 90% of silver nano-particles ranged between 20 and 100 nano-meters. Heat treatment took place in a laboratory oven at three temperatures, namely 145, 165, and 185 °C. Physical properties and mechanical properties of treated wood demonstrated statistically insignificant fluctuations at low temperatures compared to control specimens. On the other hand, an increase of temperature to 185 °C had a significant effect on all properties. Physical properties (volumetric swelling and water absorption) and mechanical properties (MOR and MOE) of treated wood demonstrated statistically insignificant fluctuations at low temperatures compared to control specimens. This degradation ultimately resulted in significant decrease in MOR, impact strength, and physical properties. However, thermal modification at 185 °C did not seem to cause significant fluctuations in MOE and compression strength parallel to grain. As a consequence of the thermal modification, part of amorphous cellulose was changed to crystalline cellulose. At low temperatures an increased crystallinity caused some of the properties to be improved. Crystallinity also demonstrated a decrease in NS-HT185 in comparison to HT185 treatment. TCr indices in specimens thermally treated at 145 °C revealed a significant increase as a result of impregnation with nanosilver suspension. This improvement in TCr index resulted in a noticeable increase in MOR and MOE values. Other properties did not show significant fluctuations, suggesting that the effect of the increased crystallinity and cross-linking in lignin was more than the negative effect of the low cell-wall polymer degradation caused by thermal modification. Change of amorphous cellulose to crystalline cellulose, as well as cross-linking in lignin, partially ameliorated the negative effects of thermal degradation at higher temperatures and therefore, compression parallel to grain and modulus of elasticity did not decrease significantly. Overall, it can be concluded that increased crystallinity and cross-linking in lignin can compensate for some decreased properties caused by thermal modification, but it would be significantly dependent on the temperature under which modification is carried out. Impregnating specimens with silver nano-suspension prior to thermal modification enhanced the effects of thermal modification as a result of improved thermal conductivity.


2012 ◽  
Vol 576 ◽  
pp. 314-317
Author(s):  
Sinin Hamdan ◽  
M. Saiful Islam

Five types of selected tropical light hardwoods were chemically modified with benzene diazonium salt to improve their physical and mechanical properties. Benzene diazonium salt underwent a coupling reaction with wood which was confirmed through FT-IR analysis. The compressive modulus of the treated wood increased, whereas modulus of rupture was shown to decrease on treatment. The modified wood samples had higher hardness (Shore D) values compared to that of the control ones.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lijuan Ping ◽  
Yubo Chai ◽  
Fangwen Zhang ◽  
Bailing Sun ◽  
Junliang Liu

In the study, we report that a safe and simple way for upgrading inferior rubber wood through the combined modification of environment-friendly MUG resin was synthesized from glyoxal, melamine, urea, and other additives. MUG-treated wood samples were prepared with six different MUG resin concentrations (5, 15, 25, 35, 45, and 55 wt %) into the wood matrix and then heated and polymerized to form a solid and hydrophobic MUG resin in the wood scaffold, and the physico-mechanical properties were evaluated. As the MUG resin concentration increased, the weight percent gain and density increased, water uptake and leachability decreased, and the antiswelling efficiency increased at first and then decreased. MUG-treated wood sample can be prepared when the MUG resin concentration was set as 25%, and the physical properties of treated wood was optimum. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that the MUG resin is widely distributed in the cell lumens and cell walls. With enhanced physico-mechanical properties, MUG-treated wood sample can be well used as a promising alternative to existing engineered wood products for structural applications.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 377 ◽  
Author(s):  
Mariana Domnica Stanciu ◽  
Daniela Sova ◽  
Adriana Savin ◽  
Nicolae Ilias ◽  
Galina A. Gorbacheva

Because of the uneven colour of black locust wood, different technologies are used to change the colour, the bestknown being chemical and thermal treatments. Some of them affect the mechanical properties of wood, such as elasticity modulus, strength, durability. This study aims to compare the physical and mechanical properties of black locust wood control samples and treated wood samples with ammonia hydroxide, in terms of density profile, colour values (CIE L*, a*, b*), mechanical properties of samples subjected to static bending, viscous-elastic properties (storage modulus (E’), loss modulus (E”) and damping (tanδ)). Two types of ammonia-fuming treatment were applied on samples: first treatment T1-5% concentration of ammonia hydroxide for 30 days; second treatment T2-10% concentration for 60 days. The results highlighted the following aspects: the overall colour change in the case of the second treatment is 27% in comparison with 7% recorded for the control samples; the lightness and yellowness values are the most affected by the second ammonia treatment of black locust wood. The density increased with almost 20% due to ammonium fuming (10% concentration/60 days); in case of static bending, the elastic modulus (MOE) tends to decrease with increasing the exposure time to ammonium, but the modulus of rupture (MOR) increases with almost 17% and the breaking force increases too, with almost 41%. In the case of dynamic mechanical analysis, the temperature leads to different viscous-elastic behaviour of each type of samples.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Darrel Nicholas ◽  
Amy Rowlen ◽  
David Milsted

Treated wood timbers employed in ground contact are often installed with a cement collar to firmly fix the structural wood post in place. Few prior studies have determined the effect of concrete on decay efficacy on treated wood, however. Treated wood nominal 4 × 4 posts were installed at four locations, with the upper ground-contact portion of each post encased in concrete, and the samples removed at various times for pH measurements. The wood alkalinity quickly increased at all four sites for the portion of the treated wood in concrete contact compared to the wood in ground contact without concrete. In laboratory decay tests employing three decay fungi, untreated wood which was first exposed or unexposed to concrete had no consistent difference in decay susceptibility. For wood treated with three different commercial copper/organic systems, cement exposure had no effect on wood treated with an amine copper azole system, while treatment with amine copper quat showed a statistically significant fungal efficacy enhancement for cement-exposed samples with both copper-tolerant fungi. Conversely, with a micronized copper azole preservative, cement exposure resulted in reduced fungal efficacy compared to treated samples which were not cement-exposed for all three decay fungi.


2016 ◽  
Vol 688 ◽  
pp. 10-16
Author(s):  
Blažej Seman ◽  
Anton Geffert ◽  
Jarmila Geffertova

Wood is loosely stored to ensure continuous production inside paper mills where it is exposed to the effect of external factors. The impact of storage leads to some changes of mechanical and physical properties of wood, but these changes are not the same in all specimens. In this paper, it has been observed that the long term storage of wood influences the impact strength in bending and the permeability of wood for fluids. During the storage, there was a decrease of impact strength in bending of poplar heartwood by 28.3% and oak by 22.1% and mature beech wood by 37.3%. Also, there was decreased a permeability of wood, poplar sapwood 18.3 % and heartwood of 53.9%; oak sapwood by 20.0% and heartwood by 20.3%; beech sapwood 45.8% and mature wood by 48.2%. By decrease of the observed properties of the stored wood, a deterioration a quality of produced pulp can be expected (a higher Kappa number, amount reject and decrease the mechanical properties of pulp).


2021 ◽  
Vol 1208 (1) ◽  
pp. 012025
Author(s):  
Redžo Hasanagić ◽  
Sauradipta Ganguly ◽  
Ermin Bajramović ◽  
Adem Hasanagić

Abstract Wood is one of the most important construction materials in Europe and its use in building applications has increased in the recent decades. To enable even more extensive and reliable use of wood, this article aimed to determine the effect of thermal modification on mechanical properties of fir wood (lat. Abies sp.), linden wood (lat. Tilia sp.), and beech wood (lat. Fagus sp.). The thermal modification was conducted in a laboratory oven at five different temperatures of 170, 180, 195, 210, 220 °C and processed with a different maximum duration of the process of 78, 120, 180, 240, 276 minutes. Mechanical properties of treated wood have shown statistically insignificant fluctuations at lower temperatures compared to control samples. On the other hand, raising the temperature to 210 °C significantly affected the strength of all the species. The results revealed that thermal modification at high temperatures and longer exposure causes a decrease in the maximum force of the three wood species.


Sign in / Sign up

Export Citation Format

Share Document