Diffusion of tritiated water into water-saturated wood particles

Holzforschung ◽  
2006 ◽  
Vol 60 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Aaron J. Jacobson ◽  
Sujit Banerjee

Abstract The diffusion rate of tritiated water into pine and aspen particles follows a Fickian mechanism. The tortuosity for the diffusion of water into wood is quite low, at approximately 1.6, and increases with decreasing particle size. The tortuosity for aspen is higher than that for pine because the shorter fiber structure in aspen gives rise to a more extensive network of pores. Diffusion into free and bound water occurs at the same rate. Also, diffusion into and out of the particles is nearly identical, demonstrating that diffusion of water into saturated wood particles is completely reversible. No hysteresis was evident, in contrast to behavior for water adsorption on unsaturated wood. The implications of these findings for pulping and wood drying are discussed.

Holzforschung ◽  
2007 ◽  
Vol 61 (2) ◽  
pp. 120-123 ◽  
Author(s):  
Frances L. Walsh ◽  
Sujit Banerjee

Abstract The surface area of pulp increases upon refining, which also increases the quantity of bound water. The subfraction of water attached to the surface as a monolayer can be determined by adding tritiated water to a pulp/water suspension and measuring the distribution of tritium between the pulp and bulk water. For bleached kraft pulp the tightly bound water slowly increases with progressive refining, increases sharply at 360 ml Canadian Standard Freeness (CSF), and then falls below CSF 220 ml. The fiber saturation point displays a similar profile, although the changes are much less pronounced. It is proposed that refining occurs in three discrete stages. First, refining down to CSF 360 ml removes the primary cell wall and S1 layer, while the S2 layer begins to swell. Next, internal delamination occurs within the S2 layer between CSF 360 and 220 ml, as confirmed by scanning electron microscopy. The onset of delamination is sudden: dramatic changes in fiber structure occur at CSF 360 ml, at which point the tightly bound water content rapidly increases. Finally, fiber destruction occurs below CSF 220 ml.


Holzforschung ◽  
2007 ◽  
Vol 61 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Frances L. Walsh ◽  
Sujit Banerjee

Abstract A new technique for measuring the monolayer water content of fiber is presented. Tritiated water is added to a pulp/water suspension, whereupon the tritium partitions between the bulk water and the pulp. In the pulp phase the tritium can exchange with free water, bound water, and with hydroxyl and other protons present in the pulp matrix. The free water in the pulp is then removed by displacement with acetone. The tritium remaining in the pulp is mostly associated with tightly bound water, with a small fraction being tied up with the exchangeable hydrogen in pulp. The procedure provides a value of 10% for the tightly bound water content of hardwood or softwood fiber, either bleached or unbleached. If this water is assumed to cover the fiber surface as a monolayer, then an estimate of the wet surface area of the fiber can be obtained. This estimate compares well with independent measurements of surface area.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1107
Author(s):  
Wakana A. Azuma ◽  
Satoru Nakashima ◽  
Eri Yamakita ◽  
Tamihisa Ohta

Leaf water storage is a complex interaction between live tissue properties (anatomy and physiology) and physicochemical properties of biomolecules and water. How leaves adsorb water molecules based on interactions between biomolecules and water, including hydrogen bonding, challenges our understanding of hydraulic acclimation in tall trees where leaves are exposed to more water stress. Here, we used infrared (IR) microspectroscopy with changing relative humidity (RH) on leaves of tall Cryptomeria japonica trees. OH band areas correlating with water content were larger for treetop (52 m) than for lower-crown (19 m) leaves, regardless of relative humidity (RH). This high water adsorption in treetop leaves was not explained by polysaccharides such as Ca-bridged pectin, but could be attributed to the greater cross-sectional area of the transfusion tissue. In both treetop and lower-crown leaves, the band areas of long (free water: around 3550 cm−1) and short (bound water: around 3200 cm−1) hydrogen bonding OH components showed similar increases with increasing RH, while the band area of free water was larger at the treetop leaves regardless of RH. Free water molecules with longer H bonds were considered to be adsorbed loosely to hydrophobic CH surfaces of polysaccharides in the leaf-cross sections.


2019 ◽  
Vol 489 (1) ◽  
pp. 115-133 ◽  
Author(s):  
Gautier Nicoli

AbstractThe fluid budget of a composite crustal column is a critical parameter that influences many lithospheric processes. The amount of water introduced into the middle and lower crust can be quantified using phase equilibrium modelling. The Dharwar Craton, India, displays a now-exposed continuous crustal section from near-surface conditions to c. 30 km depth. This section records the different steps of a c. 15 myr-long high-temperature metamorphic event (60°C kbar−1) responsible for the formation of syn- to post-tectonic anatectic intrusions. The global water budget is assessed using thermodynamic modelling on bulk-rock compositions of an average early Proterozoic supracrustal unit and c. 3.0 Ga felsic basement, the Peninsular gneisses. Results show the fast burial of a water-saturated supracrustal package (1.6 wt%) will release c. 50% of its mineral-bound water, triggering water-fluxed partial melting of the basement. Modelled anatectic magma compositions match the observed granitoid chemistries, and distinction can be made between water-fluxed melting and water-absent melting in the origin of syn- to post-tectonic anatectic granites. Findings from this study show the importance of crustal pile heterogeneity in controlling the nature of partial melting reactions, the composition of the magmas and the rheology of the crust.


Sign in / Sign up

Export Citation Format

Share Document