The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump

2015 ◽  
Vol 396 (9-10) ◽  
pp. 1083-1089 ◽  
Author(s):  
Reinke Tobias Müller ◽  
Klaas Martinus Pos

Abstract In Gram-negative bacteria, tripartite efflux pumps, like AcrAB-TolC from Escherichia coli, play a prominent role in the resistance against multiple antibiotics. Transport of the drugs across the outer membrane and its coupling to the electrochemical gradient is dependent on the presence of all three components. As the activity of the E. coli AcrAB-TolC efflux pump is dependent on both the concentration of substrates and the extent of the electrochemical gradient across the inner membrane, the dynamics of tripartite pump assembly and disassembly might be crucial for effective net transport of drugs towards the outside of the cell.

Acta Naturae ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 93-98 ◽  
Author(s):  
P. A. Nazarov ◽  
E. A. Kotova ◽  
V. P. Skulachev ◽  
Y. N. Antonenko

SkQ1, a novel antibiotic targeting bacterial bioenergetics, is highly effective against both gram-positive and gram-negative bacteria. However, some gram-negative bacteria, such as Escherichia coli and Klebsiella pneumoniae, are highly resistant to it. In different gram-negative bacteria, this resistance is associated with the identity of their AcrB transporter protein sequence with the sequence of the AcrB protein from E. coli. SkQ1 is expelled from E. coli cells by the AcrAB-TolC multidrug efflux pump. In this study, we demonstrate that SkQ1 resistance in E. coli, in contrast to chloramphenicol resistance, does not depend on the presence of the multidrug efflux pump accessory protein AcrZ.


2001 ◽  
Vol 45 (5) ◽  
pp. 1515-1521 ◽  
Author(s):  
Hui Wang ◽  
Joann L. Dzink-Fox ◽  
Minjun Chen ◽  
Stuart B. Levy

ABSTRACT The genetic basis for fluoroquinolone resistance was examined in 30 high-level fluoroquinolone-resistant Escherichia coliclinical isolates from Beijing, China. Each strain also demonstrated resistance to a variety of other antibiotics. PCR sequence analysis of the quinolone resistance-determining region of the topoisomerase genes (gyrA/B, parC) revealed three to five mutations known to be associated with fluoroquinolone resistance. Western blot analysis failed to demonstrate overexpression of MarA, and Northern blot analysis did not detect overexpression of soxS RNA in any of the clinical strains. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in 19 of 30 strains of E. colitested, and all 19 strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of eight isolates revealed amino acid changes in four isolates, a 9-bp deletion in another, and a 22-bp duplication in a sixth strain. Complementation with a plasmid-borne wild-type acrR gene reduced the level of AcrA in the mutants and partially restored antibiotic susceptibility 1.5- to 6-fold. This study shows that mutations in acrR are an additional genetic basis for fluoroquinolone resistance.


1999 ◽  
Vol 43 (2) ◽  
pp. 415-417 ◽  
Author(s):  
Tomoyuki Mine ◽  
Yuji Morita ◽  
Atsuko Kataoka ◽  
Tohru Mizushima ◽  
Tomofusa Tsuchiya

ABSTRACT Two new genes (mexXY) similar to mexAB,mexCD, and mexEF and mediating multidrug resistance were cloned from the chromosome of Pseudomonas aeruginosa. Elevated ethidium extrusion was observed withEscherichia coli cells harboring the plasmid carryingmexXY. This MexXY system confers higher resistance to fluoroquinolones than the MexAB and MexCD systems, and E. coli TolC or P. aeruginosa OprM is necessary for the function of the MexXY system.


Microbiology ◽  
2006 ◽  
Vol 152 (6) ◽  
pp. 1639-1647 ◽  
Author(s):  
Georg Polleichtner ◽  
Christian Andersen

Efflux pumps play a major role in multidrug resistance of pathogenic bacteria. The TolC homologue HI1462 was identified as the single channel-tunnel in Haemophilus influenzae required to form a functional multidrug efflux pump. The outer-membrane protein was expressed in Escherichia coli, purified and reconstituted in black lipid membranes. It exhibited a comparatively small single-channel conductance of 43 pS in 1 M KCl and is the first known TolC homologue which is anion-selective. The HI1462 structure was modelled and an arginine residue lining the tunnel entrance was identified. The channel-tunnel of a mutant with the arginine substituted by an alanine residue was cation-selective and had a sevenfold higher single-channel conductance compared to wild-type. These results confirm that the arginine is responsible for anion selectivity and forms a salt bridge with a glutamate residue of the adjacent monomer, establishing a circular network, which keeps the tunnel entrance in a tightly closed conformation. In in vivo experiments, both the wild-type HI1462 and the mutant were able to substitute for E. coli TolC in the haemolysin secretion system, but not in the AcrAB/TolC multidrug efflux pump. The structure–function relationship of HI1462 is discussed in the context of the well-studied TolC channel-tunnel of E. coli.


2006 ◽  
Vol 50 (9) ◽  
pp. 2971-2975 ◽  
Author(s):  
Rupa A. Udani ◽  
Stuart B. Levy

ABSTRACT MarA47Yp from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47 Yp gene was overexpressed. The findings suggest that marA47 Yp is a marA ortholog in Y. pestis.


2005 ◽  
Vol 187 (11) ◽  
pp. 3894-3897 ◽  
Author(s):  
Muriel Masi ◽  
Jean-Marie Pagès ◽  
Claude Villard ◽  
Elizabeth Pradel

ABSTRACT The Enterobacter aerogenes eefABC locus, which encodes a tripartite efflux pump, was cloned by complementation of an Escherichia coli tolC mutant. E. aerogenes ΔacrA expressing EefABC became less susceptible to a wide range of antibiotics. Data from eef::lacZ fusions showed that eefABC was not transcribed in the various laboratory conditions tested. However, increased transcription from Peef was observed in an E. coli hns mutant. In addition, EefA was detected in E. aerogenes expressing a dominant negative E. coli hns allele.


mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Jannik Donner ◽  
Michael Reck ◽  
Boyke Bunk ◽  
Michael Jarek ◽  
Constantin Benjamin App ◽  
...  

ABSTRACT The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) → (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine β-naphthylamide (PAβN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria.


1997 ◽  
Vol 41 (12) ◽  
pp. 2770-2772 ◽  
Author(s):  
M C Moken ◽  
L M McMurry ◽  
S B Levy

Mutants of Escherichia coli selected for resistance to the disinfectant pine oil or to a household product containing pine oil also showed resistance to multiple antibiotics (tetracycline, ampicillin, chloramphenicol, and nalidixic acid) and overexpressed the marA gene. Likewise, antibiotic-selected Mar mutants, which also overexpress marA, were resistant to pine oil. Deletion of the mar or acrAB locus, the latter encoding a multidrug efflux pump positively regulated in part by MarA, increased the susceptibility of wild-type and mutant strains to pine oil.


2011 ◽  
Vol 286 (20) ◽  
pp. 17910-17920 ◽  
Author(s):  
Yongbin Xu ◽  
Minho Lee ◽  
Arne Moeller ◽  
Saemee Song ◽  
Bo-Young Yoon ◽  
...  

2004 ◽  
Vol 48 (9) ◽  
pp. 3332-3337 ◽  
Author(s):  
Lars Hestbjerg Hansen ◽  
Elsebetta Johannesen ◽  
Mette Burmølle ◽  
Anders Hay Sørensen ◽  
Søren J. Sørensen

ABSTRACT We report here the first gene-encoded resistance mechanism to the swine growth enhancer olaquindox. The genetic elements involved in resistance to olaquindox were subcloned and sequenced from a conjugative plasmid isolated from Escherichia coli. The subcloned fragment contained two open reading frames, oqxA and oqxB, that are homologous to several resistance-nodulation-cell-division family efflux systems from different species. The putative protein sequences were aligned to both experimentally verified and putative efflux pumps. We show that oqxA and oqxB are expressed in E. coli. Plasmids containing the oqxAB genes yielded high (>128 μg/ml) resistance to olaquindox in E. coli, whereas strains containing the control plasmid showed low resistance to the drug (8 μg/ml). The oqxAB-encoded pump also conferred high (>64 μg/ml) resistance to chloramphenicol. We demonstrate that the subcloned fragment conferred H+-dependent ethidium efflux abilities to E. coli strain N43. In addition, we show that the efflux system is dependent on the host TolC outer membrane protein when expressed in E. coli.


Sign in / Sign up

Export Citation Format

Share Document