Contrasting effects of cardiac glycosides on cisplatin- and etoposide-induced cell death

2016 ◽  
Vol 397 (7) ◽  
pp. 661-670 ◽  
Author(s):  
Andrey V. Kulikov ◽  
Ekaterina A. Slobodkina ◽  
Andrey V. Alekseev ◽  
Vladimir Gogvadze ◽  
Boris Zhivotovsky

Abstract Cardiac glycosides (CGs) or cardiotonic steroids, which constitute a group of naturally occurring compounds with a steroid-like structure, can act on Na+/K+-ATPase as a receptor and activate intracellular signaling messengers leading to a variety of cellular responses. Epidemiological studies have revealed that CGs, used for the treatment of cardiac disorders, may also be beneficial as anti-cancer agents. CGs, acting in combination with other chemotherapeutic agents, may significantly alter their efficiency in relation to cancer cell elimination, causing both sensitization and an increase in cancer cell death, and in some cases resistance to chemotherapy. Here we show the ability of CGs to modulate apoptotic response to conventionally used anti-cancer drugs. In combination with etoposide, CGs digoxin may enhance cytotoxic potential, thereby allowing the chemotherapeutic dose to be decreased and minimizing toxicity and adverse reactions. Mechanisms behind this event are discussed.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Heon-Su Kim ◽  
Jung-Soo Suh ◽  
Yoon-Kwan Jang ◽  
Sang-Hyun Ahn ◽  
Ganesan Raja ◽  
...  

Abstract Persimmon leaves are known to have some beneficial effects, including ROS elimination, lipid circulation, and neuronal protection. However, their anti-cancer properties and the underlying mechanisms remain unclear. Herein, we show that treatment with the ethanol extract of persimmon, Diospyros kaki, leaves (EEDK) induces cancer cell death and inhibits cell proliferation. Using fluorescence resonance energy transfer (FRET) technology with genetically-encoded biosensors, we first found that EEDK stimulates a PDGFR-Rac signaling cascade in live cells. Moreover, we found that downstream of the PDGFR-Rac pathway, JNKs are activated by EEDK. In contrast, JNK-downstream inhibitors, such as CoCl2, T-5224, and pepstatin A, attenuated EEDK-induced cell death. Thus, we illustrate that the PDGFR-Rac-JNK signaling axis is triggered by EEDK, leading to cancer cell death, suggesting the extract of persimmon leaves may be a promising anti-cancer agent.


2020 ◽  
Author(s):  
Anjali Lathwal ◽  
Rajesh Kumar ◽  
Gajendra P.S. Raghava

AbstractOne of the emerging technologies to fight against cancer is oncolytic virus-based immunotherapy which directly lysis tumor cells. Recently, the FDA approved an oncolytic virus named T-vec for the treatment of melanoma; several hundred other viruses are in clinical trials. In order to facilitate the scientific community to fight against cancer, we build a repository of oncolytic viruses called OvirusTdb (https://webs.iiitd.edu.in/raghava/ovirustdb/). This is a manually curated repository where information is curated from research papers and patents. The current version of the repository maintains comprehensive information on therapeutically important oncolytic viruses with 5927 records where each record has 25 fields such as the virus species, cancer cell line, synergism with anti-cancer drugs, and many more. It stores information on 09 types of DNA and 15 types of RNA viruses; 300 recombinant and 09 wildtype viral strains; tested against 124 cancer types and 427 cancer cell lines. Approximately, 1047 records show improved anti-cancer response using combinatorial approach of chemotherapeutic agents with virus strains. Nearly, 3243 and 1506 records show cancer cell death via apoptosis induction and immune activation, respectively. In summary, a user-friendly web repository of oncolytic viruses for information retrieval and analysis have been developed to facilitate researchers in designing and discovering new oncolytic viruses for effective cancer treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Fatemeh Faramarzi ◽  
Parisa Zafari ◽  
Mina Alimohammadi ◽  
Mohammadreza Moonesi ◽  
Alireza Rafiei ◽  
...  

Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.


2013 ◽  
Vol 5 (12) ◽  
pp. 1821-1834 ◽  
Author(s):  
Andrea Paradisi ◽  
Marion Creveaux ◽  
Benjamin Gibert ◽  
Guillaume Devailly ◽  
Emeline Redoulez ◽  
...  

2015 ◽  
Vol 16 (14) ◽  
pp. 6175-6176 ◽  
Author(s):  
Soundararajan Vijayarathna ◽  
Subramanion L Jothy ◽  
Yeng Chen ◽  
Jagat R Kanwar ◽  
Sreenivasan Sasidharan

2019 ◽  
Vol 55 (30) ◽  
pp. 4407-4410 ◽  
Author(s):  
Li Li ◽  
Yue Zhao ◽  
Ran Cao ◽  
Lin Li ◽  
Gaihong Cai ◽  
...  

Through ABPP, piperlongumine was identified to induce cancer cell death by covalently binding and inhibiting GSTO1 and has a broad spectrum synergistic effect with other anti-cancer agents.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1947 ◽  
Author(s):  
Lalita Subedi ◽  
Mahesh Kumar Teli ◽  
Jae Hyuk Lee ◽  
Bhakta Prasad Gaire ◽  
Mi-hyun Kim ◽  
...  

Isorhapontigenin (ISO), a tetrahydroxylated stilbenoid, is an analog of resveratrol (Rsv). The various biological activities of Rsv and its derivatives have been previously reported in the context of both cancer and inflammation. However, the anti-cancer effect of ISO against breast cancer has not been well established, despite being an orally bioavailable dietary polyphenol. In this study, we determine the anti-cancer effects of ISO against breast cancer using MCF7, T47D, and MDA-MB-231 cell lines. We observed that ISO induces breast cancer cell death, cell cycle arrest, oxidative stress, and the inhibition of cell proliferation. Additionally, sphingosine kinase inhibition by ISO controlled tubulin polymerization and cancer cell growth by regulating MAPK/PI3K-mediated cell cycle arrest in MCF7 cells. Interestingly, SPHK1/2 gene silencing increased oxidative stress, cell death, and tubulin destabilization in MCF7 cells. This suggests that the anti-cancer effect of ISO can be regulated by SPHK/tubulin destabilization pathways. Overall, ISO successfully induced breast cancer cell death and cell growth arrest, suggesting this phytochemical is a better alternative for breast cancer treatment. Further studies in animal models could confirm the potency and usability of ISO over Rsv for targeting breast cancer, potentially posing an alternative candidate for improved therapy in the near future.


2016 ◽  
Vol 36 ◽  
pp. 241-248 ◽  
Author(s):  
Rajapaksha Gedara Prasad Tharanga Jayasooriya ◽  
Matharage Gayani Dilshara ◽  
Chang-Hee Kang ◽  
Seungheon Lee ◽  
Yung Hyun Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document